Microstructure and microwave dielectric properties of Al2O3 added Li2ZnTi3O8 ceramics

[1]  Yong Zheng,et al.  The Relationships Between Structures and Microwave Dielectric Properties of Li2Zn1−xCoxTi3O8 Ceramics , 2017, Journal of Electronic Materials.

[2]  E. Taheri-nassaj,et al.  Effect of zinc ions non-stoichiometry on the microstructure and microwave dielectric properties of Li2ZnTi3O8 ceramics , 2017 .

[3]  Chunchun Li,et al.  A novel low-firing microwave dielectric ceramic Li2ZnGe3O8 with cubic spinel structure , 2017 .

[4]  Zhijian Peng,et al.  Doping effect of Sm3+ on magnetic and dielectric properties of Ni-Zn ferrites , 2017 .

[5]  Hong Wang,et al.  Low temperature co-fired ceramics with ultra-low sintering temperature: A review , 2016 .

[6]  Ping Zhang,et al.  High-Q microwave dielectric materials of Li2ZnTi3O8 ceramics with SnO2 additive , 2016 .

[7]  R. Zuo,et al.  Effects of Zr substitution on the microstructure and microwave dielectric properties of Li2Zn(Ti1−xZrx)3O8 ceramics , 2015, Journal of Materials Science: Materials in Electronics.

[8]  H. Jantunen,et al.  Low-loss dielectric ceramic materials and their properties , 2015 .

[9]  Yong Zheng,et al.  Correlation of Heating Rates, Crystal Structures, and Microwave Dielectric Properties of Li2ZnTi3O8 Ceramics , 2015, Journal of Electronic Materials.

[10]  Hanxing Liu,et al.  Influence of TiO2 additive on the microwave dielectric properties of α-CaSiO3–Al2O3 ceramics , 2015 .

[11]  Shuren Zhang,et al.  Low temperature sintering and dielectric properties of Li2ZnTi3O8–TiO2 composite ceramics doped with CaO–B2O3–SiO2 glass , 2014, Journal of Materials Science: Materials in Electronics.

[12]  Huaiwu Zhang,et al.  Microwave properties of low-fired Li2ZnTi3O8 ceramics doped with CuO–Bi2O3–V2O5 , 2014 .

[13]  V. Murthy,et al.  Structural, Raman spectroscopic and microwave dielectric studies on spinel Li2Zn(1−x)NixTi3O8 compounds , 2013 .

[14]  Zhijian Peng,et al.  Progress on rare-earth doped ZnO-based varistor materials , 2013, Journal of Advanced Ceramics.

[15]  Chih-Yi Liu,et al.  Influence of B2O3 Additive on Microwave Dielectric Properties of Li2ZnTi3O8 Ceramics for LTCC Applications , 2013 .

[16]  S. A. Hassanzadeh-Tabrizi,et al.  Low temperature cofirable Li2Zn3Ti4O12 microwave dielectric ceramic with Li2O–ZnO–B2O3 glass additive , 2013, Journal of Materials Science: Materials in Electronics.

[17]  Wei Chen,et al.  Effects of Al2O3 addition on the microstructure and microwave dielectric properties of Ba4Nd9.33Ti18O54 ceramics , 2012 .

[18]  Lingxia Li,et al.  Effect of H3BO3 on the low temperature sintering and microwave dielectric properties of Li2ZnTi3O8 ceramics , 2012 .

[19]  W. Lei,et al.  Microwave dielectric properties of Li2ZnTi3O8 ceramics doped with ZnO–B2O3 frit , 2012 .

[20]  Chengxiong Huang,et al.  High Q Microwave Dielectric Ceramics in the Li2(Zn1−xAx)Ti3O8 (A = Mg, Co; x = 0.02–0.1) System , 2011 .

[21]  M. Sebastian,et al.  Synthesis and Microwave Dielectric Properties of Novel Temperature Stable High Q, Li2ATi3O8 (A=Mg, Zn) Ceramics , 2010 .

[22]  J. Volakis,et al.  A Viable Route for Dense TiO2 with a Low Microwave Dielectric Loss , 2010 .

[23]  W. Lei,et al.  Microwave dielectric properties of ZnAl2O4–TiO2 spinel-based composites , 2007 .

[24]  R. D. Shannon,et al.  Empirical electronic polarizabilities in oxides, hydroxides, oxyfluorides, and oxychlorides , 2006 .

[25]  J. Philip,et al.  A low loss, dielectric substrate in ZnAl2O4–TiO2 system for microelectronic applications , 2005 .

[26]  P. Mohanan,et al.  Temperature stable low loss ceramic dielectrics in (1-x)ZnAl$\mathsf{_{2}}$O$\mathsf{_{4}}$-xTiO$\mathsf{_{2}}$ system for microwave substrate applications , 2004 .

[27]  T. Okuda,et al.  Formation of Tungsten Bronze-Type (Ba6-3xSm8+2x)αTi18-yAlyO54(α=1+y/36) Solid Solutions and Microwave Dielectric Properties , 1996 .