A New Method with Descent Property for Symmetric Nonlinear Equations

In this article, a new method is proposed for solving symmetric nonlinear equations, which can ensure that the search direction is descent for the norm function without carrying any line search technique. Under mild conditions, the global convergence of the given method is established. Numerical results show that the proposed method is effective for the given test problems.

[1]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[2]  Anderas Griewank The “global” convergence of Broyden-like methods with suitable line search , 1986, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[3]  Yousef Saad,et al.  Convergence Theory of Nonlinear Newton-Krylov Algorithms , 1994, SIAM J. Optim..

[4]  Masao Fukushima,et al.  A Globally and Superlinearly Convergent Gauss-Newton-Based BFGS Method for Symmetric Nonlinear Equations , 1999, SIAM J. Numer. Anal..

[5]  Masao Fukushima,et al.  Testing Parallel Variable Transformation , 1999, Comput. Optim. Appl..

[6]  Dong-Hui Li,et al.  Descent Directions of Quasi-Newton Methods for Symmetric Nonlinear Equations , 2002, SIAM J. Numer. Anal..

[7]  DaiYuhong,et al.  A NONMONOTONE CONJUGATE GRADIENT ALGORITHM FOR UNCONSTRAINED OPTIMIZATION , 2002 .

[8]  Mengnien Wu,et al.  Numerical Schubert Calculus by the Pieri Homotopy Algorithm , 2002, SIAM J. Numer. Anal..

[9]  Jin-yanFan A MODIFIED LEVENBERG-MARQUARDT ALGORITHM FOR SINGULAR SYSTEM OF NONLINEAR EQUATIONS , 2003 .

[10]  Zhen-Jun Shi,et al.  Convergence of line search methods for unconstrained optimization , 2004, Appl. Math. Comput..

[11]  Detong Zhu,et al.  Nonmonotone backtracking inexact quasi-Newton algorithms for solving smooth nonlinear equations , 2005, Appl. Math. Comput..

[12]  Guoyin Li,et al.  New nonlinear conjugate gradient formulas for large-scale unconstrained optimization problems , 2006, Appl. Math. Comput..

[13]  Xiwen Lu,et al.  A Modified Gauss-Newton-based BFGS Method for Symmetric Nonlinear Equations , 2006 .

[14]  Liying Liu,et al.  The convergence properties of some new conjugate gradient methods , 2006, Appl. Math. Comput..

[15]  Wei Zeng-xin,et al.  New Two-Point Stepsize Gradient Methods for Solving Unconstrained Optimization Problems , 2007 .

[16]  Zengxin Wei,et al.  The superlinear convergence analysis of a nonmonotone BFGS algorithm on convex objective functions , 2008 .

[17]  Xiwen Lu,et al.  A new backtracking inexact BFGS method for symmetric nonlinear equations , 2008, Comput. Math. Appl..

[18]  Xiwen Lu,et al.  A modified PRP conjugate gradient method , 2009, Ann. Oper. Res..

[19]  Gonglin Yuan,et al.  Modified nonlinear conjugate gradient methods with sufficient descent property for large-scale optimization problems , 2009, Optim. Lett..

[20]  Xi-wen,et al.  A Nonmonotone Trust Region Method for Solving Symmetric Nonlinear Equations , 2009 .

[21]  Gonglin Yuan,et al.  A Rank-One Fitting Method with Descent Direction for Solving Symmetric Nonlinear Equations , 2009, Int. J. Commun. Netw. Syst. Sci..

[22]  Xiwen Lu,et al.  A conjugate gradient method with descent direction for unconstrained optimization , 2009, J. Comput. Appl. Math..

[23]  Zengxin Wei,et al.  New line search methods for unconstrained optimization , 2009 .

[24]  Xiwen Lu,et al.  BFGS trust-region method for symmetric nonlinear equations , 2009 .

[25]  Gonglin Yuan,et al.  A Trust-Region-Based BFGS Method with Line Search Technique for Symmetric Nonlinear Equations , 2009, Adv. Oper. Res..

[26]  Gonglin Yuan,et al.  Convergence analysis of a modified BFGS method on convex minimizations , 2010, Comput. Optim. Appl..

[27]  Jinyan Fan,et al.  An improved trust region algorithm for nonlinear equations , 2011, Comput. Optim. Appl..