Investigation of ortho-positronium annihilation for porous materials with different geometries and topologies

[1]  S. Asai,et al.  Observation of orthopositronium thermalization in silica aerogel at cryogenic temperatures , 2021, Physical Review A.

[2]  Xiaolian Liu,et al.  A diffusion anisotropy descriptor links morphology effects of H-ZSM-5 zeolites to their catalytic cracking performance , 2021, Communications Chemistry.

[3]  Haiping Yang,et al.  Effect of Mesopores in ZSM-5 on the Catalytic Conversion of Acetic Acid, Furfural, and Guaiacol , 2021 .

[4]  D. D. De Vos,et al.  Porosimetry for Thin Films of Metal–Organic Frameworks: A Comparison of Positron Annihilation Lifetime Spectroscopy and Adsorption‐Based Methods , 2021, Advanced materials.

[5]  D. D. De Vos,et al.  Aqueous Flow Reactor and Vapour‐Assisted Synthesis of Aluminium Dicarboxylate Metal–Organic Frameworks with Tuneable Water Sorption Properties , 2020, Chemistry.

[6]  Reaz A. Chowdhury,et al.  The Influence of Free Volume Determined by Positron Annihilation Lifetime Spectroscopy (PALS) on Gas Permeability of Cellulose Nanocrystals Films. , 2020, ACS applied materials & interfaces.

[7]  M. Liedke,et al.  Positron annihilation analysis of nanopores and growth mechanism of oblique angle evaporated TiO2 and SiO2 thin films and multilayers , 2020 .

[8]  V. Niculescu Mesoporous Silica Nanoparticles for Bio-Applications , 2020, Frontiers in Materials.

[9]  Qiang Xu,et al.  Location determination of metal nanoparticles relative to a metal-organic framework , 2019, Nature Communications.

[10]  N. Qi,et al.  Effect of swelling agent on the pore structure of SBA-15 studied by positron annihilation , 2019, Applied Surface Science.

[11]  Jianyong Zhang,et al.  From Zeolitic Imidazolate Framework‐8 to Metal‐Organic Frameworks (MOFs): Representative Substance for the General Study of Pioneering MOF Applications , 2018, Energy & Environmental Materials.

[12]  N. Ren,et al.  Positron annihilation lifetime spectroscopy (PALS) study of the as prepared and calcined MFI zeolites , 2017 .

[13]  S. Mitchell,et al.  Pore Topology Effects in Positron Annihilation Spectroscopy of Zeolites. , 2017, Chemphyschem : a European journal of chemical physics and physical chemistry.

[14]  Junya Zhang,et al.  High efficiency removal of triclosan by structure-directing agent modified mesoporous MIL-53(Al) , 2017, Environmental Science and Pollution Research.

[15]  F. Castelli,et al.  Positronium Confinement in Small Cavities: A Two-Particle Model for the Lowering of Contact Density. , 2016, Physical review letters.

[16]  S. Mitchell,et al.  Structural analysis of hierarchically organized zeolites , 2015, Nature Communications.

[17]  Shiguang Li,et al.  Continuously Adjustable, Molecular-Sieving “Gate” on 5A Zeolite for Distinguishing Small Organic Molecules by Size , 2015, Scientific Reports.

[18]  J. P. Olivier,et al.  Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) , 2015 .

[19]  A. Matzger,et al.  Positronium emission spectra from self-assembled metal-organic frameworks , 2014 .

[20]  J. Pérez‐Ramírez,et al.  Mesopore quality determines the lifetime of hierarchically structured zeolite catalysts , 2014, Nature Communications.

[21]  Y. Maekawa,et al.  Poly(ethylene-co-tetrafluoroethylene) (ETFE)-based graft-type polymer electrolyte membranes with different ion exchange capacities: Relative humidity dependence for fuel cell applications , 2013 .

[22]  K. Wada,et al.  A simple shape-free model for pore-size estimation with positron annihilation lifetime spectroscopy , 2013 .

[23]  Y. S. Lin,et al.  Designing hierarchical porous features of ZSM-5 zeolites via Si/Al ratio and their dynamic behavior in seawater ion complexes , 2013 .

[24]  A. Matzger,et al.  Evidence of Positronium Bloch states in porous crystals of Zn4O-coordination polymers. , 2013, Physical review letters.

[25]  S. Dai,et al.  Effect of Pore Topology and Accessibility on Gas Adsorption Capacity in Zeolitic-Imidazolate Frameworks: Bringing Molecular Simulation Close to Experiment , 2011 .

[26]  R. Millini,et al.  Investigation on the porosity of zeolite NU-88 by means of positron annihilation lifetime spectroscopy , 2009 .

[27]  T. Ohdaira,et al.  Positronium annihilation and pore surface chemistry in mesoporous silica films , 2007 .

[28]  D. Gidley,et al.  POSITRON ANNIHILATION AS A METHOD TO CHARACTERIZE POROUS MATERIALS , 2006 .

[29]  D. Dutta,et al.  Structural aspects of synthetic zeolite: A comparative assay through positron annihilation and gas adsorption methods , 2005 .

[30]  S. Chatterjee,et al.  Pore structure of silica gel: a comparative study through BET and PALS , 2005 .

[31]  D. Dutta,et al.  Effect of temperature on positronium annihilation in silica gel. , 2005, Journal of Physical Chemistry B.

[32]  Gérard Férey,et al.  A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. , 2004, Chemistry.

[33]  A. Yee,et al.  Determination of Pore Size in Mesoporous Thin Films from the Annihilation Lifetime of Positronium , 2001 .

[34]  T. Goworek Positronium as a Probe of Small Free Volumes , 2000 .

[35]  E. T. Ryan,et al.  Positronium annihilation in mesoporous thin films , 1999 .

[36]  Y. Ujihira,et al.  EXTENSION OF THE EQUATION FOR THE ANNIHILATION LIFETIME OF ORTHO-POSITRONIUM AT A CAVITY LARGER THAN 1 NM IN RADIUS , 1999 .

[37]  T. Shidara,et al.  Origins of positronium emitted from SiO 2 , 1998 .

[38]  B. Jasińska,et al.  Positronium states in the pores of silica gel , 1998 .

[39]  Stewart,et al.  Thermalization of free positronium atoms by collisions with silica-powder grains, aerogel grains, and gas molecules. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[40]  Risto M. Nieminen,et al.  Theory of Positrons in Solids and on Solid Surfaces , 1994 .

[41]  Joannopoulos,et al.  Thermal amplitudes of surface atoms on Si(111) 2 x 1 and Si(001) 2 x 1. , 1989, Physical review. B, Condensed matter.

[42]  R. Nieminen,et al.  Electron-positron density-functional theory. , 1986, Physical review. B, Condensed matter.

[43]  John N. Sherwood,et al.  The temperature dependence of positron lifetimes in solid pivalic acid , 1981 .

[44]  W. M. Meier,et al.  Structure of synthetic zeolite ZSM-5 , 1978, Nature.

[45]  S. J. Tao Positronium Annihilation in Molecular Substances , 1972 .

[46]  J. Boer,et al.  Thet-curve of multimolecular N2-adsorption , 1966 .

[47]  J. Mano,et al.  Recent progresses in the adsorption of organic, inorganic, and gas compounds by MCM-41-based mesoporous materials , 2020 .

[48]  John G. Outram,et al.  A critical review of waste resources, synthesis, and applications for Zeolite LTA , 2020 .

[49]  M. Willinger,et al.  H-ZSM-5 zeolite model crystals: Structure-diffusion-activity relationship in methanol-to-olefins catalysis , 2017 .

[50]  D. Haar,et al.  Quantum Mechanics Vol. 1 , 1965 .