Multistage sampling structure conversion of video signals

The work extends multistage implementation of sampling structure conversion to the multidimensional (M-D) case. The issues arising in this task are usefully addressed on the basis of lattice theory. Numerical data supporting the advantages of multistage sampling conversion are presented, and the case of format conversion from the 4/3 to the 16/9 aspect ratio is examined as a study case. The main indication of the present work is that multistage implementation, in the case of systems for sampling structure conversion of video signals, may improve the system characteristics and visual rendition. >

[1]  T. Ramstad Digital methods for conversion between arbitrary sampling frequencies , 1984 .

[2]  J. O. Limb,et al.  Exchange of spatial and temporal resolution in television coding , 1971 .

[3]  P. P. Vaidyanathan,et al.  Recent developments in multidimensional multirate systems , 1993, IEEE Trans. Circuits Syst. Video Technol..

[4]  C. A. Rogers,et al.  An Introduction to the Geometry of Numbers , 1959 .

[5]  A. Knoll Filter design for the interpolation of highly subsampled pictures , 1991, Signal Process. Image Commun..

[6]  Harvey Cohn,et al.  Advanced Number Theory , 1980 .

[7]  H. Samueli,et al.  On the design of optimal equiripple FIR digital filters for data transmission applications , 1988 .

[8]  Pierre Siohan,et al.  2-D FIR filter design for sampling structure conversion , 1991, IEEE Trans. Circuits Syst. Video Technol..

[9]  Mathukumalli Vidyasagar,et al.  Control System Synthesis: A Factorization Approach, Part I , 2011, Control System Synthesis Part I.

[10]  Gian Antonio Mian,et al.  Computer aided design of multidimensional FIR filters for video applications , 1989 .

[11]  Roberto Manduchi,et al.  On the determination of all the sublattices of preassigned index and its application to multidimensional subsampling , 1993, IEEE Trans. Circuits Syst. Video Technol..

[12]  T. Saramaki,et al.  A class of FIR Nyquist (Nth-band) filters with zero intersymbol interference , 1987 .

[13]  Peter McMullen,et al.  Convex bodies which tile space by translation , 1980 .

[14]  Jan P. Allebach,et al.  The analysis and design of multidimensional FIR perfect reconstruction filter banks for arbitrary sampling lattices , 1991 .

[15]  P. P. Vaidyanathan,et al.  The role of integer matrices in multidimensional multirate systems , 1993, IEEE Trans. Signal Process..

[16]  M. Renfors Multi-dimensional sampling structure conversion with one-dimensional Nth-band filters , 1989, IEEE International Symposium on Circuits and Systems,.

[17]  L.R. Rabiner,et al.  Interpolation and decimation of digital signals—A tutorial review , 1981, Proceedings of the IEEE.

[18]  Y. Kamp,et al.  Chebyshev approximation for two-dimensional nonrecursive digital filters , 1975 .

[19]  Junn-Kuen Liang,et al.  Design of optimal Nyquist, partial response, Nth band, and nonuniform tap spacing FIR digital filters using linear programming techniques , 1985 .

[20]  L. Rabiner,et al.  Design techniques for two-dimensional digital filters , 1972 .

[21]  R. Mersereau,et al.  The processing of periodically sampled multidimensional signals , 1983 .

[22]  Sanjit K. Mitra,et al.  Design of computationally efficient interpolated fir filters , 1988 .

[23]  S. Mitra,et al.  Interpolated finite impulse response filters , 1984 .

[24]  E. Dubois,et al.  The sampling and reconstruction of time-varying imagery with application in video systems , 1985, Proceedings of the IEEE.