Superconvergent trivariate quadratic spline quasi-interpolants on Worsey-Piper split

In this paper we use Normalized trivariate Worsey-Piper B-splines recently constructed by Sbibih et?al. (2012) and the method proposed in Sbibih et?al. (2013) to give a new representation of Worsey-Piper Hermite interpolant of any piecewise polynomial of class at least C 1 over the Worsey-Piper split in terms of its polar forms. Using this representation we construct several superconvergent discrete quasi-interpolants. The construction that we present in this work is a generalization of the one presented in Sbibih et?al. (2012) with other properties.

[1]  B. Joe,et al.  Relationship between tetrahedron shape measures , 1994 .

[2]  Klaus Mueller,et al.  A practical evaluation of popular volume rendering algorithms , 2000, VVS '00.

[3]  Ren-hong Wang Multivariate Spline Functions and Their Applications , 2001 .

[4]  Benjamin Mora,et al.  Visualization of Isosurfaces with Parametric Cubes , 2001, Comput. Graph. Forum.

[5]  A. Serghini,et al.  Polar forms and quadratic spline quasi-interpolants on Powell--Sabin partitions , 2009 .

[6]  A. Serghini,et al.  Normalized trivariate B-splines on Worsey-Piper split and quasi-interpolants , 2012 .

[7]  Hendrik Speleers,et al.  Construction of Normalized B-Splines for a Family of Smooth Spline Spaces Over Powell–Sabin Triangulations , 2013 .

[8]  D. Sbibih,et al.  Superconvergent quadratic spline quasi-interpolants on Powell–Sabin partitions , 2015 .

[9]  Sara Remogna,et al.  On trivariate blending sums of univariate and bivariate quadratic spline quasi-interpolants on bounded domains , 2011, Comput. Aided Geom. Des..

[10]  Hendrik Speleers,et al.  A normalized basis for quintic Powell-Sabin splines , 2010, Comput. Aided Geom. Des..

[11]  Malcolm A. Sabin,et al.  Piecewise Quadratic Approximations on Triangles , 1977, TOMS.

[12]  Paul Dierckx,et al.  On calculating normalized Powell-Sabin B-splines , 1997, Comput. Aided Geom. Des..

[13]  Christian Rössl,et al.  Reconstruction of volume data with quadratic super splines , 2004, IEEE Transactions on Visualization and Computer Graphics.

[14]  Tatyana Sorokina,et al.  A multivariate Powell–Sabin interpolant , 2008, Adv. Comput. Math..

[15]  Neil A. Dodgson,et al.  Triquadratic reconstruction for interactive modelling of potential fields , 2002, Proceedings SMI. Shape Modeling International 2002.

[16]  Peter-Pike J. Sloan,et al.  Interactive ray tracing for isosurface rendering , 1998 .

[17]  Frank Zeilfelder,et al.  Local quasi-interpolation by cubic C1 splines on type-6 tetrahedral partitions , 2007 .

[18]  K. Chung,et al.  On Lattices Admitting Unique Lagrange Interpolations , 1977 .

[19]  Thomas Kalbe,et al.  Quasi-interpolation by quadratic C1-splines on truncated octahedral partitions , 2009, Comput. Aided Geom. Des..

[20]  Paul Sablonnière,et al.  Quadratic spline quasi-interpolants and collocation methods , 2009, Math. Comput. Simul..

[21]  Larry L. Schumaker,et al.  Spline functions on triangulations , 2007, Encyclopedia of mathematics and its applications.

[22]  L. Schumaker,et al.  Local Spline Approximation Methods , 1975 .

[23]  Paul Sablonnière,et al.  Recent Progress on Univariate and Multivariate Polynomial and Spline Quasi-interpolants , 2005 .

[24]  Frank Zeilfelder,et al.  Spline approximation of general volumetric data , 2004, SM '04.

[25]  Catterina Dagnino,et al.  On the construction of local quadratic spline quasi-interpolants on bounded rectangular domains , 2008 .

[26]  Christian Rössl,et al.  Quasi-interpolation by quadratic piecewise polynomials in three variables , 2005, Comput. Aided Geom. Des..

[27]  Sara Remogna,et al.  Quasi-interpolation operators based on the trivariate seven-direction C2 quartic box spline , 2011 .

[28]  Carla Manni,et al.  Quadratic spline quasi-interpolants on Powell-Sabin partitions , 2007, Adv. Comput. Math..

[29]  Bruce R. Piper,et al.  A trivariate Powell-Sabin interpolant , 1988, Comput. Aided Geom. Des..

[30]  Hendrik Speleers,et al.  Multivariate normalized Powell-Sabin B-splines and quasi-interpolants , 2013, Comput. Aided Geom. Des..