Superconvergent trivariate quadratic spline quasi-interpolants on Worsey-Piper split
暂无分享,去创建一个
[1] B. Joe,et al. Relationship between tetrahedron shape measures , 1994 .
[2] Klaus Mueller,et al. A practical evaluation of popular volume rendering algorithms , 2000, VVS '00.
[3] Ren-hong Wang. Multivariate Spline Functions and Their Applications , 2001 .
[4] Benjamin Mora,et al. Visualization of Isosurfaces with Parametric Cubes , 2001, Comput. Graph. Forum.
[5] A. Serghini,et al. Polar forms and quadratic spline quasi-interpolants on Powell--Sabin partitions , 2009 .
[6] A. Serghini,et al. Normalized trivariate B-splines on Worsey-Piper split and quasi-interpolants , 2012 .
[7] Hendrik Speleers,et al. Construction of Normalized B-Splines for a Family of Smooth Spline Spaces Over Powell–Sabin Triangulations , 2013 .
[8] D. Sbibih,et al. Superconvergent quadratic spline quasi-interpolants on Powell–Sabin partitions , 2015 .
[9] Sara Remogna,et al. On trivariate blending sums of univariate and bivariate quadratic spline quasi-interpolants on bounded domains , 2011, Comput. Aided Geom. Des..
[10] Hendrik Speleers,et al. A normalized basis for quintic Powell-Sabin splines , 2010, Comput. Aided Geom. Des..
[11] Malcolm A. Sabin,et al. Piecewise Quadratic Approximations on Triangles , 1977, TOMS.
[12] Paul Dierckx,et al. On calculating normalized Powell-Sabin B-splines , 1997, Comput. Aided Geom. Des..
[13] Christian Rössl,et al. Reconstruction of volume data with quadratic super splines , 2004, IEEE Transactions on Visualization and Computer Graphics.
[14] Tatyana Sorokina,et al. A multivariate Powell–Sabin interpolant , 2008, Adv. Comput. Math..
[15] Neil A. Dodgson,et al. Triquadratic reconstruction for interactive modelling of potential fields , 2002, Proceedings SMI. Shape Modeling International 2002.
[16] Peter-Pike J. Sloan,et al. Interactive ray tracing for isosurface rendering , 1998 .
[17] Frank Zeilfelder,et al. Local quasi-interpolation by cubic C1 splines on type-6 tetrahedral partitions , 2007 .
[18] K. Chung,et al. On Lattices Admitting Unique Lagrange Interpolations , 1977 .
[19] Thomas Kalbe,et al. Quasi-interpolation by quadratic C1-splines on truncated octahedral partitions , 2009, Comput. Aided Geom. Des..
[20] Paul Sablonnière,et al. Quadratic spline quasi-interpolants and collocation methods , 2009, Math. Comput. Simul..
[21] Larry L. Schumaker,et al. Spline functions on triangulations , 2007, Encyclopedia of mathematics and its applications.
[22] L. Schumaker,et al. Local Spline Approximation Methods , 1975 .
[23] Paul Sablonnière,et al. Recent Progress on Univariate and Multivariate Polynomial and Spline Quasi-interpolants , 2005 .
[24] Frank Zeilfelder,et al. Spline approximation of general volumetric data , 2004, SM '04.
[25] Catterina Dagnino,et al. On the construction of local quadratic spline quasi-interpolants on bounded rectangular domains , 2008 .
[26] Christian Rössl,et al. Quasi-interpolation by quadratic piecewise polynomials in three variables , 2005, Comput. Aided Geom. Des..
[27] Sara Remogna,et al. Quasi-interpolation operators based on the trivariate seven-direction C2 quartic box spline , 2011 .
[28] Carla Manni,et al. Quadratic spline quasi-interpolants on Powell-Sabin partitions , 2007, Adv. Comput. Math..
[29] Bruce R. Piper,et al. A trivariate Powell-Sabin interpolant , 1988, Comput. Aided Geom. Des..
[30] Hendrik Speleers,et al. Multivariate normalized Powell-Sabin B-splines and quasi-interpolants , 2013, Comput. Aided Geom. Des..