Cyclic Di-GMP Signaling in Bacteria: Recent Advances and New Puzzles

Cyclic di-GMP \[bis-(3′-5′)-cyclic di-GMP\] (Fig. [1][1]) is a novel second messenger in bacteria that was first described as an allosteric activator of cellulose synthase in Gluconacetobacter xylinus ([49][2]). It is now established that this nucleotide is almost ubiquitous in bacteria, where

[1]  J. M. Dow,et al.  The HD-GYP domain, cyclic di-GMP signaling, and bacterial virulence to plants. , 2006, Molecular plant-microbe interactions : MPMI.

[2]  U. Jenal,et al.  Mechanisms of cyclic-di-GMP signaling in bacteria. , 2006, Annual review of genetics.

[3]  U. Römling,et al.  The PilZ Domain Is a Receptor for the Second Messenger c-di-GMP , 2006, Journal of Biological Chemistry.

[4]  C. Ramos,et al.  The HD‐GYP domain of RpfG mediates a direct linkage between the Rpf quorum‐sensing pathway and a subset of diguanylate cyclase proteins in the phytopathogen Xanthomonas axonopodis pv citri , 2006, Molecular microbiology.

[5]  Roger A. Jones,et al.  Polymorphism of the signaling molecule c-di-GMP. , 2006, Journal of the American Chemical Society.

[6]  A. Camilli,et al.  Transcriptome and Phenotypic Responses of Vibrio cholerae to Increased Cyclic di-GMP Level , 2006, Journal of bacteriology.

[7]  U. Römling,et al.  Hierarchical involvement of various GGDEF domain proteins in rdar morphotype development of Salmonella enterica serovar Typhimurium , 2006, Molecular microbiology.

[8]  B. Kazmierczak,et al.  Analysis of FimX, a phosphodiesterase that governs twitching motility in Pseudomonas aeruginosa , 2006, Molecular microbiology.

[9]  J. M. Dow,et al.  Cell-cell signaling in Xanthomonas campestris involves an HD-GYP domain protein that functions in cyclic di-GMP turnover. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Dorit Amikam,et al.  Cyclic di-GMP as a second messenger. , 2006, Current opinion in microbiology.

[11]  Bentley Lim,et al.  Cyclic‐diGMP signal transduction systems in Vibrio cholerae: modulation of rugosity and biofilm formation , 2006, Molecular microbiology.

[12]  Y. Hayakawa,et al.  Genome-wide Transcriptional Profile of Escherichia coli in Response to High Levels of the Second Messenger 3′,5′-Cyclic Diguanylic Acid* , 2006, Journal of Biological Chemistry.

[13]  E. Huitema,et al.  Bacterial Birth Scar Proteins Mark Future Flagellum Assembly Site , 2006, Cell.

[14]  Bonnie L. Bassler,et al.  Bacterial Small-Molecule Signaling Pathways , 2006, Science.

[15]  Daniel G. Lee,et al.  Analysis of Pseudomonas aeruginosa diguanylate cyclases and phosphodiesterases reveals a role for bis-(3'-5')-cyclic-GMP in virulence. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Michael Y. Galperin,et al.  PilZ domain is part of the bacterial c-di-GMP binding protein , 2006, Bioinform..

[17]  P. Watnick,et al.  NspS, a Predicted Polyamine Sensor, Mediates Activation of Vibrio cholerae Biofilm Formation by Norspermidine , 2005, Journal of bacteriology.

[18]  D. Tifrea,et al.  A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[19]  U. Römling,et al.  Phenotypic Convergence Mediated by GGDEF-Domain-Containing Proteins , 2005, Journal of bacteriology.

[20]  A. Camilli,et al.  The EAL Domain Protein VieA Is a Cyclic Diguanylate Phosphodiesterase* , 2005, Journal of Biological Chemistry.

[21]  Matthias Christen,et al.  Identification and Characterization of a Cyclic di-GMP-specific Phosphodiesterase and Its Allosteric Control by GTP* , 2005, Journal of Biological Chemistry.

[22]  A. Camilli,et al.  Cyclic Diguanylate Regulates Vibrio cholerae Virulence Gene Expression , 2005, Infection and Immunity.

[23]  Michael J. MacCoss,et al.  Aminoglycoside antibiotics induce bacterial biofilm formation , 2005, Nature.

[24]  Michael Y. Galperin,et al.  C‐di‐GMP: the dawning of a novel bacterial signalling system , 2005, Molecular microbiology.

[25]  Andrew J. Schmidt,et al.  The Ubiquitous Protein Domain EAL Is a Cyclic Diguanylate-Specific Phosphodiesterase: Enzymatically Active and Inactive EAL Domains , 2005, Journal of bacteriology.

[26]  Michael Y. Galperin,et al.  A census of membrane-bound and intracellular signal transduction proteins in bacteria: Bacterial IQ, extroverts and introverts , 2005, BMC Microbiology.

[27]  A. G. Bobrov,et al.  The phosphodiesterase activity of the HmsP EAL domain is required for negative regulation of biofilm formation in Yersinia pestis. , 2005, FEMS microbiology letters.

[28]  Roger A. Jones,et al.  A glutamate‐alanine‐leucine (EAL) domain protein of Salmonella controls bacterial survival in mice, antioxidant defence and killing of macrophages: role of cyclic diGMP , 2005, Molecular microbiology.

[29]  U. Römling,et al.  Characterization of the rdar morphotype, a multicellular behaviour in Enterobacteriaceae , 2005, Cellular and Molecular Life Sciences CMLS.

[30]  Mark Gomelsky,et al.  Cyclic Diguanylate Is a Ubiquitous Signaling Molecule in Bacteria: Insights into Biochemistry of the GGDEF Protein Domain , 2005, Journal of bacteriology.

[31]  B. Giese,et al.  Structural basis of activity and allosteric control of diguanylate cyclase. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[32]  C. Solano,et al.  Role of the GGDEF protein family in Salmonella cellulose biosynthesis and biofilm formation , 2004, Molecular microbiology.

[33]  U. Römling,et al.  GGDEF and EAL domains inversely regulate cyclic di‐GMP levels and transition from sessility to motility , 2004, Molecular microbiology.

[34]  A. Camilli,et al.  Cyclic diguanylate (c‐di‐GMP) regulates Vibrio cholerae biofilm formation , 2004, Molecular microbiology.

[35]  David A. D'Argenio,et al.  Cyclic di-GMP as a bacterial second messenger. , 2004, Microbiology.

[36]  J. M. Dow,et al.  Biofilm formation and dispersal in Xanthomonas campestris. , 2004, Microbes and infection.

[37]  S. Lory,et al.  Pseudomonas aeruginosa regulates flagellin expression as part of a global response to airway fluid from cystic fibrosis patients. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[38]  U. Jenal Cyclic di-guanosine-monophosphate comes of age: a novel secondary messenger involved in modulating cell surface structures in bacteria? , 2004, Current opinion in microbiology.

[39]  B. Giese,et al.  Cell cycle-dependent dynamic localization of a bacterial response regulator with a novel di-guanylate cyclase output domain. , 2004, Genes & development.

[40]  A. G. Bobrov,et al.  Temperature Regulation of the Hemin Storage (Hms+) Phenotype of Yersinia pestis Is Posttranscriptional , 2004, Journal of bacteriology.

[41]  Lian-Hui Zhang,et al.  A bacterial cell–cell communication signal with cross‐kingdom structural analogues , 2003, Molecular microbiology.

[42]  J. Mattick,et al.  FimX, a Multidomain Protein Connecting EnvironmentalSignals to Twitching Motility in Pseudomonasaeruginosa , 2003, Journal of bacteriology.

[43]  J. M. Dow,et al.  Biofilm dispersal in Xanthomonas campestris is controlled by cell–cell signaling and is required for full virulence to plants , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Patrick Goymer,et al.  Role of the GGDEF regulator PleD in polar development of Caulobacter crescentus , 2003, Molecular microbiology.

[45]  P. Watnick,et al.  Identification and Characterization of a Vibrio cholerae Gene, mbaA , Involved in Maintenance of Biofilm Architecture , 2022 .

[46]  A. Camilli,et al.  The Vibrio cholerae vieSAB Locus Encodes a Pathway Contributing to Cholera Toxin Production , 2002, Journal of bacteriology.

[47]  Frederick M. Ausubel,et al.  Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation , 2002, Nature.

[48]  D. Amikam,et al.  Genetic data indicate that proteins containing the GGDEF domain possess diguanylate cyclase activity. , 2001, FEMS microbiology letters.

[49]  Michael Y. Galperin,et al.  Novel domains of the prokaryotic two-component signal transduction systems. , 2001, FEMS microbiology letters.

[50]  M. Gilles-Gonzalez,et al.  Phosphodiesterase A1, a regulator of cellulose synthesis in Acetobacter xylinum, is a heme-based sensor. , 2001, Biochemistry.

[51]  N. Grishin,et al.  GGDEF domain is homologous to adenylyl cyclase , 2001, Proteins.

[52]  J. M. Dow,et al.  A two‐component system involving an HD‐GYP domain protein links cell–cell signalling to pathogenicity gene expression in Xanthomonas campestris , 2000, Molecular microbiology.

[53]  M. Gilles-Gonzalez,et al.  Dos, a heme-binding PAS protein from Escherichia coli, is a direct oxygen sensor. , 2000, Biochemistry.

[54]  Michael Y. Galperin,et al.  A specialized version of the HD hydrolase domain implicated in signal transduction. , 1999, Journal of molecular microbiology and biotechnology.

[55]  Peter Ross,et al.  Three cdg Operons Control Cellular Turnover of Cyclic Di-GMP in Acetobacter xylinum: Genetic Organization and Occurrence of Conserved Domains in Isoenzymes , 1998, Journal of bacteriology.

[56]  T. Merkel,et al.  Copyright © 1998, American Society for Microbiology Characterization of the bvgR Locus of Bordetella pertussis , 1997 .

[57]  T. Merkel,et al.  Contribution of regulation by the bvg locus to respiratory infection of mice by Bordetella pertussis. , 1998, Infection and immunity.

[58]  D. Amikam,et al.  c‐di‐GMP‐binding protein, a new factor regulating cellulose synthesis in Acetobacter xylinum , 1997, FEBS letters.

[59]  J. M. Dow,et al.  A novel regulatory system required for pathogenicity of Xanthomonas campestris is mediated by a small diffusible signal molecule , 1997, Molecular microbiology.

[60]  J. Mattick,et al.  Identification of a novel gene, pilZ, essential for type 4 fimbrial biogenesis in Pseudomonas aeruginosa , 1996, Journal of bacteriology.

[61]  A. Newton,et al.  Identification of a novel response regulator required for the swarmer-to-stalked-cell transition in Caulobacter crescentus , 1995, Journal of bacteriology.

[62]  D. Milton,et al.  Sequence of a novel virulence-mediating gene, virC, from Vibrio anguillarum. , 1995, Gene.

[63]  T. Merkel,et al.  Identification of a locus required for the regulation of bvg-repressed genes in Bordetella pertussis , 1995, Journal of bacteriology.

[64]  D. Amikam,et al.  Polypeptide composition of bacterial cyclic diguanylic acid-dependent cellulose synthase and the occurrence of immunologically crossreacting proteins in higher plants. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[65]  J. H. Boom,et al.  Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid , 1987, Nature.