Multi-resolution segmentation parameters optimization and evaluation for VHR remote sensing image based on meanNSQI and discrepancy measure

Multi-Resolution Segmentation (MRS) is known to be a general segmentation algorithm for very-high-resolution (VHR) remote sensing applications. The critical problems of MRS are the optimization of ...

[1]  Mark Berman,et al.  Segmenting multispectral Landsat TM images into field units , 2002, IEEE Trans. Geosci. Remote. Sens..

[2]  W. Kruskal,et al.  Use of Ranks in One-Criterion Variance Analysis , 1952 .

[3]  T. Martha,et al.  A Tool Assessing Optimal Multi-Scale Image Segmentation , 2017, Journal of the Indian Society of Remote Sensing.

[4]  Dirk Tiede,et al.  Object validity for operational tasks in a policy context , 2010 .

[5]  D. Civco,et al.  Optimizing multi-resolution segmentation scale using empirical methods: Exploring the sensitivity of the supervised discrepancy measure Euclidean distance 2 (ED2) , 2014 .

[6]  O. Csillik,et al.  Automated parameterisation for multi-scale image segmentation on multiple layers , 2014, ISPRS journal of photogrammetry and remote sensing : official publication of the International Society for Photogrammetry and Remote Sensing.

[7]  Tapas Ranjan Martha,et al.  Segment Optimization and Data-Driven Thresholding for Knowledge-Based Landslide Detection by Object-Based Image Analysis , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[8]  Min Yuan,et al.  Separate segmentation of multi-temporal high-resolution remote sensing images for object-based change detection in urban area , 2017 .

[9]  Ashton M. Shortridge Practical limits of Moran's autocorrelation index for raster class maps , 2007, Comput. Environ. Urban Syst..

[10]  Yun Zhang,et al.  A Supervised and Fuzzy-based Approach to Determine Optimal Multi-resolution Image Segmentation Parameters , 2012 .

[11]  Steven E. Franklin,et al.  A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery , 2012 .

[12]  Michael A. Wulder,et al.  Local spatial autocorrelation characteristics of remotely sensed imagery assessed with the Getis statistic , 1998 .

[13]  M. Neubert,et al.  Assessing image segmentation quality – concepts, methods and application , 2008 .

[14]  Hui Zhang,et al.  Image segmentation evaluation: A survey of unsupervised methods , 2008, Comput. Vis. Image Underst..

[15]  Huili Gong,et al.  Object-Based Urban Tree Species Classification Using Bi-Temporal WorldView-2 and WorldView-3 Images , 2015, Remote. Sens..

[16]  Thomas Blaschke,et al.  A comparison of three image-object methods for the multiscale analysis of landscape structure , 2003 .

[17]  Alastair R. Allen,et al.  A Similarity Metric for Edge Images , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  M. Côté,et al.  Effect of S-(2-chloroethyl)-DL-cysteine on the transport of p-aminohippurate ion in renal plasma membrane vesicles. , 1990, Archives of biochemistry and biophysics.

[19]  Patricia Gober,et al.  Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery , 2011, Remote Sensing of Environment.

[20]  Jie Tian,et al.  Optimization in multi‐scale segmentation of high‐resolution satellite images for artificial feature recognition , 2007 .

[21]  Bo Wang,et al.  Discrepancy measures for selecting optimal combination of parameter values in object-based image analysis , 2012 .

[22]  A W EDWARDS,et al.  A METHOD FOR CLUSTER ANALYSIS. , 1965, Biometrics.

[23]  Dirk Tiede,et al.  ESP: a tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data , 2010, Int. J. Geogr. Inf. Sci..

[24]  P. Gong,et al.  Accuracy Assessment Measures for Object-based Image Segmentation Goodness , 2010 .

[25]  M. Neubert,et al.  Enhanced evaluation of image segmentation results , 2010 .