Protein conjugation with genetically encoded unnatural amino acids.

[1]  Y. Satow,et al.  Structure of ribonuclease H phased at 2 A resolution by MAD analysis of the selenomethionyl protein. , 1990, Science.

[2]  M. G. Finn,et al.  Click Chemistry: Diverse Chemical Function from a Few Good Reactions. , 2001, Angewandte Chemie.

[3]  P G Schultz,et al.  Expanding the Genetic Code of Escherichia coli , 2001, Science.

[4]  Irwin Hollander,et al.  Gemtuzumab ozogamicin, a potent and selective anti-CD33 antibody-calicheamicin conjugate for treatment of acute myeloid leukemia. , 2002, Bioconjugate chemistry.

[5]  S. L. Mayo,et al.  A designed phenylalanyl-tRNA synthetase variant allows efficient in vivo incorporation of aryl ketone functionality into proteins. , 2002, Journal of the American Chemical Society.

[6]  P. Schultz,et al.  Addition of the keto functional group to the genetic code of Escherichia coli , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[7]  T. Muir Semisynthesis of proteins by expressed protein ligation. , 2003, Annual review of biochemistry.

[8]  R. Graziano,et al.  Chemical production of bispecific antibodies. , 2004, Methods in molecular biology.

[9]  Peter G Schultz,et al.  An expanded genetic code with a functional quadruplet codon. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Peter G Schultz,et al.  A genetically encoded photocaged amino acid. , 2004, Journal of the American Chemical Society.

[11]  Paul Schimmel,et al.  Incorporation of nonnatural amino acids into proteins. , 2004, Annual review of biochemistry.

[12]  J. Chin,et al.  A network of orthogonal ribosome·mRNA pairs , 2005, Nature chemical biology.

[13]  Damon L. Meyer,et al.  Enhanced activity of monomethylauristatin F through monoclonal antibody delivery: effects of linker technology on efficacy and toxicity. , 2006, Bioconjugate chemistry.

[14]  Sahana Bose,et al.  Simultaneous targeting of multiple disease mediators by a dual-variable-domain immunoglobulin , 2007, Nature Biotechnology.

[15]  Dieter Söll,et al.  Natural expansion of the genetic code. , 2007, Nature chemical biology.

[16]  Kai Johnsson,et al.  Chemical probes shed light on protein function. , 2007, Current opinion in structural biology.

[17]  P. Schultz,et al.  Site-specific incorporation of methyl- and acetyl-lysine analogues into recombinant proteins. , 2008, Angewandte Chemie.

[18]  J. Chin,et al.  Genetically encoding N(epsilon)-acetyllysine in recombinant proteins. , 2008, Nature chemical biology.

[19]  Joseph M. Fox,et al.  Tetrazine ligation: fast bioconjugation based on inverse-electron-demand Diels-Alder reactivity. , 2008, Journal of the American Chemical Society.

[20]  P. Schultz,et al.  A general and efficient method for the site-specific dual-labeling of proteins for single molecule fluorescence resonance energy transfer. , 2008, Journal of the American Chemical Society.

[21]  Ronald T Raines,et al.  Hydrolytic stability of hydrazones and oximes. , 2008, Angewandte Chemie.

[22]  Paul Polakis,et al.  Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index , 2008, Nature Biotechnology.

[23]  R. Weissleder,et al.  Tetrazine-based cycloadditions: application to pretargeted live cell imaging. , 2008, Bioconjugate chemistry.

[24]  P. Dawson,et al.  Rapid oxime and hydrazone ligations with aromatic aldehydes for biomolecular labeling. , 2008, Bioconjugate chemistry.

[25]  Ryohei Ishii,et al.  Multistep engineering of pyrrolysyl-tRNA synthetase to genetically encode N(epsilon)-(o-azidobenzyloxycarbonyl) lysine for site-specific protein modification. , 2008, Chemistry & biology.

[26]  T. Huber,et al.  Site-specific Incorporation of Keto Amino Acids into Functional G Protein-coupled Receptors Using Unnatural Amino Acid Mutagenesis* , 2008, Journal of Biological Chemistry.

[27]  T. Hofer,et al.  Molecularly defined antibody conjugation through a selenocysteine interface. , 2009, Biochemistry.

[28]  J. Hess,et al.  The trifunctional antibody ertumaxomab destroys tumor cells that express low levels of human epidermal growth factor receptor 2. , 2009, Cancer research.

[29]  Francis B. Peters,et al.  Site-directed spin labeling of a genetically encoded unnatural amino acid , 2009, Proceedings of the National Academy of Sciences.

[30]  Carsten Reinhardt,et al.  Bispecific T-cell engaging antibodies for cancer therapy. , 2009, Cancer research.

[31]  P. Chames,et al.  Bispecific antibodies for cancer therapy , 2009, Current opinion in drug discovery & development.

[32]  Carolyn R Bertozzi,et al.  Cu-free click cycloaddition reactions in chemical biology. , 2010, Chemical Society reviews.

[33]  Emmanuel Baslé,et al.  Protein chemical modification on endogenous amino acids. , 2010, Chemistry & biology.

[34]  Jason W. Chin,et al.  Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome , 2010, Nature.

[35]  P. Schultz,et al.  Genetically encoded alkenes in yeast. , 2010, Angewandte Chemie.

[36]  Peter G Schultz,et al.  Adding new chemistries to the genetic code. , 2010, Annual review of biochemistry.

[37]  B. E. Kimmel,et al.  Optimized clinical performance of growth hormone with an expanded genetic code , 2011, Proceedings of the National Academy of Sciences.

[38]  E. Lemke,et al.  Genetically Encoded Copper-Free Click Chemistry , 2011, Angewandte Chemie.

[39]  D. Söll,et al.  Expanding the Genetic Code of Escherichia coli with Phosphoserine , 2011, Science.

[40]  P. Moore,et al.  Application of dual affinity retargeting molecules to achieve optimal redirected T-cell killing of B-cell lymphoma. , 2011, Blood.

[41]  Matthew D. Schultz,et al.  RF1 Knockout Allows Ribosomal Incorporation of Unnatural Amino Acids at Multiple Sites , 2011, Nature chemical biology.

[42]  T. Muir,et al.  Genetically encoded 1,2-aminothiols facilitate rapid and site-specific protein labeling via a bio-orthogonal cyanobenzothiazole condensation. , 2011, Journal of the American Chemical Society.

[43]  Allie C. Obermeyer,et al.  Rapid chemoselective bioconjugation through oxidative coupling of anilines and aminophenols. , 2011, Journal of the American Chemical Society.

[44]  M. Sliwkowski,et al.  Conjugation site modulates the in vivo stability and therapeutic activity of antibody-drug conjugates , 2012, Nature Biotechnology.

[45]  J. Chin,et al.  Genetically encoded norbornene directs site-specific cellular protein labelling via a rapid bioorthogonal reaction. , 2012, Nature chemistry.

[46]  Peter Kuhn,et al.  Site-specific DNA-antibody conjugates for specific and sensitive immuno-PCR , 2012, Proceedings of the National Academy of Sciences.

[47]  Michael T. Taylor,et al.  Genetically encoded tetrazine amino acid directs rapid site-specific in vivo bioorthogonal ligation with trans-cyclooctenes. , 2012, Journal of the American Chemical Society.

[48]  T. Carell,et al.  A genetically encoded norbornene amino acid for the mild and selective modification of proteins in a copper-free click reaction. , 2012, Angewandte Chemie.

[49]  Margaret S. Wu,et al.  FGF21 Analogs of Sustained Action Enabled by Orthogonal Biosynthesis Demonstrate Enhanced Antidiabetic Pharmacology in Rodents , 2012, Diabetes.

[50]  Peter G Schultz,et al.  Evolution of multiple, mutually orthogonal prolyl-tRNA synthetase/tRNA pairs for unnatural amino acid mutagenesis in Escherichia coli , 2012, Proceedings of the National Academy of Sciences.

[51]  Peter G Schultz,et al.  Synthesis of bispecific antibodies using genetically encoded unnatural amino acids. , 2012, Journal of the American Chemical Society.

[52]  J. Chin,et al.  Genetic Encoding of Bicyclononynes and trans-Cyclooctenes for Site-Specific Protein Labeling in Vitro and in Live Mammalian Cells via Rapid Fluorogenic Diels–Alder Reactions , 2012, Journal of the American Chemical Society.

[53]  Peter G Schultz,et al.  Synthesis of site-specific antibody-drug conjugates using unnatural amino acids , 2012, Proceedings of the National Academy of Sciences.

[54]  Qing Lin,et al.  Genetically encoded cyclopropene directs rapid, photoclick-chemistry-mediated protein labeling in mammalian cells. , 2012, Angewandte Chemie.

[55]  Chan Hyuk Kim,et al.  Self-assembled antibody multimers through peptide nucleic acid conjugation. , 2013, Journal of the American Chemical Society.