Progress in 3-D Mapping and Localization

Thispaperis a summaryof resultsobtainedin thepastfew years in theareaof 3-D mappingandrobot localization. Theemphasisof this work is thereconstructionof three-dimensional representationsof theenvironmentfromsensor information,assuminginaccurateor absentrobotposeinformation,andassuminggeneral 3-D configurations,e.g., not limited to 2-1/2Delevationmaps.Theapproachesaredividedinto twobroadclasses:Surfacematching, in which large piecesof 3-D surfacesare matchedacrossobservationsin order to recover thetransformationsbetweenobservations,andfeaturematching in which individual featuresextractedfromtheinputdataarematched.Surfacematching is mostapplicableto robotsequippedwith range sensor s such asstereoor ladar, while feature matching is most applicableto video-basedsystems. We reporton experimentsandapplicationsin theareasof terrain mapbuilding, modelingof interior environments,modelingof individual objectsfrom manyviews,cooperative stereovision using teams of r obots, and simultaneous r ecovery of structur e and motion fr om bearing-only sensor s.

[1]  Hugh F. Durrant-Whyte,et al.  Simultaneous map building and localization for an autonomous mobile robot , 1991, Proceedings IROS '91:IEEE/RSJ International Workshop on Intelligent Robots and Systems '91.

[2]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Richard I. Hartley,et al.  Euclidean Reconstruction from Uncalibrated Views , 1993, Applications of Invariance in Computer Vision.

[4]  Rachid Deriche,et al.  A Robust Technique for Matching two Uncalibrated Images Through the Recovery of the Unknown Epipolar Geometry , 1995, Artif. Intell..

[5]  H.F. Durrant-Whyte,et al.  A new approach for filtering nonlinear systems , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[6]  Marc Levoy,et al.  A volumetric method for building complex models from range images , 1996, SIGGRAPH.

[7]  Evangelos E. Milios,et al.  Globally Consistent Range Scan Alignment for Environment Mapping , 1997, Auton. Robots.

[8]  Ingemar J. Cox,et al.  Cylindrical rectification to minimize epipolar distortion , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[9]  Michael Garland,et al.  Surface simplification using quadric error metrics , 1997, SIGGRAPH.

[10]  Francois Blais,et al.  A system for indoor 3-D mapping and virtual environments , 1997 .

[11]  Martial Hebert,et al.  Unconstrained registration of large 3D point sets for complex model building , 1998, Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No.98CH36190).

[12]  Lindsay Kleeman,et al.  Large Scale Sonarray Mapping using Multiple Connected Local Maps , 1998 .

[13]  Erik Wolfart,et al.  Automated 3D reconstruction of interiors with multiple scan views , 1998, Electronic Imaging.

[14]  Philippe Robert,et al.  Integration of Multiple Range Maps through Consistency Processing , 1998, SMILE.

[15]  Andrew W. Fitzgibbon,et al.  Bundle Adjustment - A Modern Synthesis , 1999, Workshop on Vision Algorithms.

[16]  Martial Hebert,et al.  A new approach to 3-D terrain mapping , 1999, Proceedings 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human and Environment Friendly Robots with High Intelligence and Emotional Quotients (Cat. No.99CH36289).

[17]  Kari Pulli,et al.  Multiview registration for large data sets , 1999, Second International Conference on 3-D Digital Imaging and Modeling (Cat. No.PR00062).

[18]  Omead Amidi,et al.  Arctic Test Flights of the CMU Autonomous Helicopter , 1999 .

[19]  P. McLauchlan Gauge invariance in projective 3D reconstruction , 1999, Proceedings IEEE Workshop on Multi-View Modeling and Analysis of Visual Scenes (MVIEW'99).

[20]  Gerhard Roth Registering two overlapping range images , 1999, Second International Conference on 3-D Digital Imaging and Modeling (Cat. No.PR00062).

[21]  Reinhard Koch,et al.  A simple and efficient rectification method for general motion , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[22]  Andrew E. Johnson,et al.  Using Spin Images for Efficient Object Recognition in Cluttered 3D Scenes , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Philip F. McLauchlan,et al.  A batch/recursive algorithm for 3D scene reconstruction , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[24]  Martial Hebert,et al.  Experimental Comparison of Techniques for Localization and Mapping Using a Bearing-Only Sensor , 2000, ISER.

[25]  Martial Hebert,et al.  Invariant filtering for simultaneous localization and mapping , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[26]  Martial Hebert,et al.  3D map reconstruction from range data , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[27]  Martial Hebert,et al.  Distributed robotic mapping of extreme environments , 2001, SPIE Optics East.

[28]  Daniel F. Huber,et al.  Automatic 3D modeling using range images obtained from unknown viewpoints , 2001, Proceedings Third International Conference on 3-D Digital Imaging and Modeling.

[29]  J. Leonard,et al.  Decoupled Stochastic Mapping , 2001 .

[30]  Wolfram Burgard,et al.  Robust Monte Carlo localization for mobile robots , 2001, Artif. Intell..