Author Correction: Spin-controlled generation of indistinguishable and distinguishable photons from silicon vacancy centres in silicon carbide

[1]  Noel H. Wan,et al.  Transform-Limited Photons From a Coherent Tin-Vacancy Spin in Diamond. , 2018, Physical review letters.

[2]  Dries Vercruysse,et al.  4H-silicon-carbide-on-insulator for integrated quantum and nonlinear photonics , 2020 .

[3]  H. B. Weber,et al.  Stark tuning of the Silicon Vacancy in Silicon Carbide. , 2019, Nano letters.

[4]  J. Coutinho,et al.  Electrical charge state identification and control for the silicon vacancy in 4H-SiC , 2019, npj Quantum Information.

[5]  N. T. Son,et al.  Electrical and optical control of single spins integrated in scalable semiconductor devices , 2019, Science.

[6]  N. T. Son,et al.  Electrical charge state manipulation of single silicon vacancies in a silicon carbide quantum optoelectronic device. , 2019, Nano letters.

[7]  Jörg Wrachtrup,et al.  Polarization-entangled photon pairs from a single molecule , 2019, OPTO.

[8]  Sang-Yun Lee,et al.  Spectrally stable defect qubits with no inversion symmetry for robust spin-to-photon interface , 2018, Physical Review Applied.

[9]  M. Doherty,et al.  Spin polarization through intersystem crossing in the silicon vacancy of silicon carbide , 2018, Physical Review B.

[10]  N. T. Son,et al.  High-fidelity spin and optical control of single silicon-vacancy centres in silicon carbide , 2018, Nature Communications.

[11]  Kenneth Goodenough,et al.  Near-term quantum-repeater experiments with nitrogen-vacancy centers: Overcoming the limitations of direct transmission , 2018, Physical Review A.

[12]  D. D. B. Rao,et al.  GENERATION OF ENTANGLED PHOTON STRINGS USING NV CENTERS IN DIAMOND , 2015, Symposium Latsis 2019 on Diamond Photonics - Physics, Technologies and Applications.

[13]  Ronald Hanson,et al.  Quantum technologies with optically interfaced solid-state spins , 2018, Nature Photonics.

[14]  C. Becher,et al.  Limitations on the indistinguishability of photons from remote solid state sources , 2018, New Journal of Physics.

[15]  M. Markham,et al.  One-second coherence for a single electron spin coupled to a multi-qubit nuclear-spin environment , 2018, Nature Communications.

[16]  Peter C. Humphreys,et al.  Deterministic delivery of remote entanglement on a quantum network , 2017, Nature.

[17]  P. Senellart,et al.  High-performance semiconductor quantum-dot single-photon sources. , 2017, Nature nanotechnology.

[18]  M. Lukin,et al.  Silicon-Vacancy Spin Qubit in Diamond: A Quantum Memory Exceeding 10 ms with Single-Shot State Readout. , 2017, Physical review letters.

[19]  Cristian Bonato,et al.  Quantum properties of dichroic silicon vacancies in silicon carbide , 2017, 1707.02715.

[20]  Daniel Riedel,et al.  Deterministic enhancement of coherent photon generation from a nitrogen-vacancy center in ultrapure diamond , 2017, 1703.00815.

[21]  M. Lukin,et al.  Quantum Nonlinear Optics with a Germanium-Vacancy Color Center in a Nanoscale Diamond Waveguide. , 2016, Physical review letters.

[22]  Aroosa Ijaz,et al.  Optical and microwave control of germanium-vacancy center spins in diamond , 2016, 1612.02947.

[23]  H. Weinfurter,et al.  Event-Ready Bell Test Using Entangled Atoms Simultaneously Closing Detection and Locality Loopholes. , 2016, Physical review letters.

[24]  T. Ohshima,et al.  Locking of electron spin coherence above 20 ms in natural silicon carbide , 2016, 1602.05775.

[25]  S. Economou,et al.  Spin-photon entanglement interfaces in silicon carbide defect centers , 2016, Nanotechnology.

[26]  M. Markham,et al.  High-fidelity transfer and storage of photon states in a single nuclear spin , 2015, Nature Photonics.

[27]  I. Sagnes,et al.  Near-optimal single-photon sources in the solid state , 2015, Nature Photonics.

[28]  A Knorr,et al.  Exploring Dephasing of a Solid-State Quantum Emitter via Time- and Temperature-Dependent Hong-Ou-Mandel Experiments. , 2015, Physical review letters.

[29]  V. Zwiller,et al.  Overcoming power broadening of the quantum dot emission in a pure wurtzite nanowire , 2014, 1407.2833.

[30]  S. Wehner,et al.  Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres , 2015, Nature.

[31]  G. Weihs,et al.  Optimal excitation conditions for indistinguishable photons from quantum dots , 2015, 1507.07404.

[32]  F Schmidt,et al.  Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography , 2015, Nature Communications.

[33]  I. Sagnes,et al.  Cavity-enhanced two-photon interference using remote quantum dot sources , 2015, 1505.07382.

[34]  I. Gerhardt,et al.  Coherent control of single spins in silicon carbide at room temperature. , 2014, Nature materials.

[35]  Takeshi Ohshima,et al.  Isolated electron spins in silicon carbide with millisecond coherence times. , 2014, Nature materials.

[36]  J. Cooper,et al.  Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices and Applications , 2014 .

[37]  G. Astakhov,et al.  Magnetic field and temperature sensing with atomic-scale spin defects in silicon carbide , 2014, Scientific Reports.

[38]  M. Markham,et al.  Coherent optical transitions in implanted nitrogen vacancy centers. , 2014, Nano letters.

[39]  F. Jelezko,et al.  Multiple intrinsically identical single-photon emitters in the solid state , 2013, Nature Communications.

[40]  I. Sagnes,et al.  Bright solid-state sources of indistinguishable single photons , 2013, Nature Communications.

[41]  Oliver Benson,et al.  Measurement of the ultrafast spectral diffusion of the optical transition of nitrogen vacancy centers in nano-size diamond using correlation interferometry. , 2013, Physical review letters.

[42]  M. Markham,et al.  Heralded entanglement between solid-state qubits separated by three metres , 2012, Nature.

[43]  G. Solomon,et al.  Dynamics of nonclassical light from a single solid-state quantum emitter. , 2012, Physical review letters.

[44]  Hannes Bernien,et al.  Two-photon quantum interference from separate nitrogen vacancy centers in diamond. , 2011, Physical review letters.

[45]  D. Ostrowsky,et al.  A quantum relay chip based on telecommunication integrated optics technology , 2011, 1110.0660.

[46]  Ken Cooper,et al.  Quantum interference of electrically generated single photons from a quantum dot , 2010, Nanotechnology.

[47]  E. Janzén,et al.  The Silicon Vacancy in SiC , 2009 .

[48]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[49]  D. Matsukevich,et al.  Bell inequality violation with two remote atomic qubits. , 2008, Physical review letters.

[50]  Tsunenobu Kimoto,et al.  Investigation of carrier lifetime in 4H-SiC epilayers and lifetime control by electron irradiation , 2007 .

[51]  Thomas Legero,et al.  Quantum beat of two single photons. , 2004, Physical review letters.

[52]  G. Solomon,et al.  Entanglement formation and violation of Bell's inequality with a semiconductor single photon source. , 2003, Physical review letters.

[53]  Yoshihisa Yamamoto,et al.  Indistinguishable photons from a single-photon device , 2002, Nature.

[54]  J. Cirac,et al.  Long-distance quantum communication with atomic ensembles and linear optics , 2001, Nature.

[55]  Hong,et al.  Measurement of subpicosecond time intervals between two photons by interference. , 1987, Physical review letters.

[56]  R. H. Brown,et al.  A Test of a New Type of Stellar Interferometer on Sirius , 1956, Nature.