Measurements of resonant scattering in the Perseus Cluster core with Hitomi SXS

Thanks to its high spectral resolution (similar to 5 eV at 6 keV), the Soft X-ray Spectrometer (SXS) on board Hitomi enables us to measure the detailed structure of spatially resolved emission lines from highly ionized ions in galaxy clusters for the first time. In this series of papers, using the SXS we have measured the velocities of gas motions, metallicities and the multi-temperature structure of the gas in the core of the Perseus Cluster. Here, we show that when inferring physical properties from line emissivities in systems like Perseus, the resonant scattering effect should be taken into account. In the Hitomi waveband, resonant scattering mostly affects the Fe XXV He alpha line (w)-the strongest line in the spectrum. The flux measured by Hitomi in this line is suppressed by a factor of similar to 1.3 in the inner similar to 30 kpc, compared to predictions for an optically thin plasma; the suppression decreases with the distance from the center. The w line also appears slightly broader than other lines from the same ion. The observed distortions of the w line flux, shape, and distance dependence are all consistent with the expected effect of the resonant scattering in the Perseus core. By measuring the ratio of fluxes in optically thick (w) and thin (Fe XXV forbidden, He beta, Ly alpha) lines, and comparing these ratios with predictions from Monte Carlo radiative transfer simulations, the velocities of gas motions have been obtained. The results are consistent with the direct measurements of gas velocities from line broadening described elsewhere in this series, although the systematic and statistical uncertainties remain significant. Further improvements in the predictions of line emissivities in plasma models, and deeper observations with future X-ray missions offering similar or better capabilities to the Hitomi SXS, will enable resonant scattering measurements to provide powerful constraints on the amplitude and anisotropy of cluster gas motions.

Matteo Guainazzi | Ryuichi Fujimoto | Hideyuki Mori | Ryo Iizuka | Manabu Ishida | Yoshitaka Ishisaki | Yasuo Tanaka | Massimiliano Galeazzi | Yoh Takei | Makoto Sawada | Dan McCammon | Yoshiyuki Inoue | Yasushi Fukazawa | Motohide Kokubun | Aya Kubota | Naomi Ota | Kazutaka Yamaoka | Hideyo Kunieda | Takashi Okajima | Takuya Miyazawa | Akihiro Furuzawa | Yoshito Haba | Shigeo Yamauchi | Marshall W. Bautz | Esra Bulbul | Yang Soong | Satoshi Sugita | Teruaki Enoto | Yuichiro Ezoe | Ikuyuki Mitsuishi | Kazuhisa Mitsuda | Koji Mori | Yohko Tsuboi | Masahiro Tsujimoto | Takayoshi Kohmura | Hiroshi Murakami | Kumi Ishikawa | Hirofumi Noda | Takao Nakagawa | Daniel Maier | Marc Audard | Richard L. Kelley | Fumie Akimoto | Maria Chernyakova | Margherita Giustini | Andrea Goldwurm | Ann Hornschemeier | Yuto Ichinohe | Jelle Kaastra | Shu Koyama | Peter Kretschmar | Michael Loewenstein | Kyoko Matsushita | Missagh Mehdipour | Shin Mineshige | Koji Mukai | Hiroshi Nakajima | Hirokazu Odaka | Samar Safi-Harb | Kazuhiro Sakai | Goro Sato | Hiromi Seta | Megumi Shidatsu | Yasuharu Sugawara | Francesco Tombesi | Hiroyuki Uchida | Hideki Uchiyama | Shutaro Ueda | Eugenio Ursino | Shin Watanabe | Shinya Yamada | Yoichi Yatsu | Daisuke Yonetoku | Irina Zhuravleva | Brian J. Williams | Philippe Laurent | Takayuki Hayashi | Brian R. McNamara | Knox S. Long | Frits Paerels | Hiroshi Tsunemi | Tadayasu Dotani | Hiroshi Tomida | Masayoshi Nobukawa | Junko S. Hiraga | Kumiko K. Nobukawa | Aya Bamba | John P. Hughes | Tahir Yaqoob | Hironori Matsumoto | Liyi Gu | Eric D. Miller | Megan E. Eckart | Caroline A. Kilbourne | Takaya Ohashi | Yuzuru Tawara | Noriko Y. Yamasaki | Norbert Schartel | Carlo Ferrigno | Gregory V. Brown | Akio Hoshino | Tetsu Kitayama | Hans A. Krimm | Makoto Yamauchi | Kenji Hamaguchi | Hisamitsu Awaki | Katsuji Koyama | Masanori Ohno | Rie Sato | Frederick S. Porter | Nobuyuki Kawai | Kiyoshi Hayashida | Shunji Kitamoto | Tsunefumi Mizuno | Richard F. Mushotzky | Meng P. Chiao | Hajime Inoue | Takao Kitaguchi | Masanobu Ozaki | Yukikatsu Terada | Maurice A. Leutenegger | Stephane Paltani | Norbert Werner | Ken Ebisawa | Magnus Axelsson | Takayuki Tamura | Yoshihiro Ueda | Paolo S. Coppi | Luigi C. Gallo | Lorella Angelini | Yuichi Terashima | Laura W. Brenneman | Edward M. Cackett | Andrew C. Fabian | Adam R. Foster | Yasuyuki T. Tanaka | Katja Pottschmidt | Hiroki Akamatsu | Jun Kataoka | Andrew Szymkowiak | Ciro Pinto | Hiroyasu Tajima | Hiroya Yamaguchi | Satoru Katsuda | Robert Petre | Chris Done | Isamu Hatsukade | Yoshitomo Maeda | Kazuo Makishima | Maxim Markevitch | Takeshi Nakamori | Kazuhiro Nakazawa | Aurora Simionescu | Hiromitsu Takahashi | Toru Tamagawa | Abderahmen Zoghbi | Kouichi Hagino | Maki Furukawa | Dan R. Wilkins | Shinya Nakashima | Steven W. Allen | Cor P. de Vries | Tadayuki Takahashi | Yasunobu Uchiyama | Randall K. Smith | Jan-Willem den Herder | B. Williams | S. Paltani | R. Blandford | T. Nakagawa | H. Murakami | K. Long | N. Schartel | N. Kawai | T. Kitayama | M. Audard | M. Giustini | R. Petre | F. Paerels | M. Markevitch | J. Hughes | S. Allen | T. Tsuru | A. Fabian | R. Sato | T. Tamagawa | M. Eckart | P. Gandhi | Jon M. Miller | K. Makishima | R. Fujimoto | K. Mitsuda | N. Yamasaki | Y. Takei | M. Tsujimoto | T. Ohashi | Y. Ishisaki | Y. Ezoe | S. Kitamoto | H. Yamaguchi | Kosuke Sato | R. Kelley | F. Porter | C. Kilbourne | D. McCammon | J. Herder | E. Cackett | C. Done | J. Kaastra | M. Mehdipour | K. Yamaoka | K. Pottschmidt | Y. Yatsu | A. Szymkowiak | D. Yonetoku | I. Zhuravleva | M. Galeazzi | T. Kallman | R. Mushotzky | P. Serlemitsos | H. Akamatsu | S. Yamada | Y. Fukazawa | T. Mizuno | C. Vries | T. Okajima | K. Mukai | M. Chiao | I. Harrus | Shin Watanabe | K. Nakazawa | Y. Ichinohe | N. Werner | F. Aharonian | H. Krimm | L. Angelini | J. Kataoka | E. Bulbul | A. Foster | Randall K. Smith | M. Loewenstein | H. C. F. Aharonian | F. Akimoto | H. Awaki | M. Axelsson | A. Bamba | M. Bautz | L. Brenneman | M. Chernyakova | P. Coppi | E. Costantini | J. Plaa | T. Dotani | K. Ebisawa | T. Enoto | C. Ferrigno | A. Furuzawa | L. Gallo | A. Goldwurm | L. Gu | M. Guainazzi | Y. Haba | K. Hagino | K. Hamaguchi | I. Hatsukade | Takayuki J Hayashi | K. Hayashida | J. Hiraga | A. Hornschemeier | A. Hoshino | R. Iizuka | H. Inoue | Y. Inoue | M. Ishida | K. Ishikawa | S. Katsuda | T. Kitaguchi | T. Kohmura | M. Kokubun | S. Koyama | K. Koyama | P. Kretschmar | A. Kubota | H. Kunieda | P. Laurent | Shiu-Hang Lee | M. Leutenegger | O. Limousin | D. Lumb | Y. Maeda | D. Maier | H. Matsumoto | K. Matsushita | B. McNamara | E. Miller | S. Mineshige | I. Mitsuishi | T. Miyazawa | H. Mori | K. Mori | H. Nakajima | T. Nakamori | S. Nakashima | K. Nobukawa | M. Nobukawa | H. Noda | H. Odaka | M. Ohno | N. Ota | M. Ozaki | C. Pinto | C. Reynolds | S. Safi-Harb | S. Saito | K. Sakai | T. Sasaki | G. Sato | M. Sawada | H. Seta | M. Shidatsu | A. Simionescu | Y. Soong | L. Stawarz | Y. Sugawara | S. Sugita | H. Tajima | Hiromitsu Takahashi | Tadayuki Takahashi | S. Takeda | T. Tamura | Takaaki Tanaka | Yasuo Tanaka | M. Tashiro | Y. Tawara | Y. Terada | Y. Terashima | F. Tombesi | H. Tomida | Y. Tsuboi | H. Tsunemi | H. Uchida | H. Uchiyama | Y. Uchiyama | S. Ueda | Y. Ueda | S. Uno | E. Ursino | D. Wilkins | M. Yamauchi | S. Yamauchi | T. Yaqoob | A. Zoghbi | G. Madejski | Toshiki Sato | K. Hayashi | Lukasz Stawarz | Makoto S. Tashiro | Toru Sasaki | Roger Blandford | Kosuke Sato | Greg Madejski | Christopher S. Reynolds | Shinya Saito | T. Kamae | Takeshi Go Tsuru | Takaaki Tanaka | Toshiki Sato | Shiu-Hang Lee | Hitomi Collaboration Felix Aharonian | Elisa Costantini | Jelle de Plaa | Poshak Gandhi | Ilana M. Harrus | Katsuhiro Hayashi | Tim Kallman | Tsuneyoshi Kamae | David Lumb | Peter J. Serlemtsos | C. Megan Urry | Olivier O. Limousin | G. V. Brown | C. M. Urry | M. Furukawa | A. Ogorzalek | Greg V. Brown | Shinichiro Takeda | Shinichiro Uno | Anna Ogorzalek | J. D. Herder | S. Watanabe | H. Takahashi | Jonathan M. Miller | R. Blandford | G. Brown | T. Hayashi | Y. Tanaka | M. Iwai | H. Takahashi | S. Watanabe | E. Miller | Koji Mukai | Kumiko K. Norukawa | J. Hughes | H. Matsumoto | Shin Watanabe | L. Gu | H. Murakami

[1]  E. M. Churazov,et al.  Polarization of X-ray lines from galaxy clusters and elliptical galaxies - a way to measure the tangential component of gas velocity , 2009, 0912.0016.

[2]  W. Forman,et al.  Constraints on turbulent pressure in the X‐ray haloes of giant elliptical galaxies from resonant scattering , 2009, 0904.0254.

[3]  R. Sunyaev,et al.  Resonant Scattering of X-ray Emission Lines in the Hot Intergalactic Medium , 2010, 1007.3263.

[4]  K. Widmann,et al.  MEASUREMENT AND INTERPRETATION OF THE POLARIZATION OF THE X-RAY LINE EMISSION OF HELIUMLIKE FE XXV EXCITED BY AN ELECTRON BEAM , 1996 .

[5]  Resonance scattering, absorption and off-centre abundance peaks in clusters of galaxies , 2006, astro-ph/0604575.

[6]  D. Buote,et al.  Spatial Diffusion of X-ray Emission Lines in the M87 Cooling Flow; Evidence for Absorption , 2001, astro-ph/0101545.

[7]  P. Beiersdorfer,et al.  Effects of electron spiralling on the anisotropy and polarization of photon emission from an electron beam ion trap , 1999 .

[8]  J. Kennea,et al.  XMM-Newton observations of M 87 and its X-ray halo , 2000, astro-ph/0011459.

[9]  H. L. Zhang,et al.  Cascade effects on the polarization of He-like Fe 1s2l-1s{sup 2} x-ray line emission , 2007 .

[10]  J. Jernigan,et al.  High-Resolution Observations of the Elliptical Galaxy NGC 4636 with the Reflection Grating Spectrometer on Board XMM-Newton , 2001, astro-ph/0110013.

[11]  R. Sunyaev,et al.  Polarization of resonance X-ray lines from clusters of galaxies , 2001, astro-ph/0112382.

[12]  A. Finoguenov,et al.  Insights into the location and dynamics of the coolest X-ray emitting gas in clusters of galaxies , 2016, 1606.04954.

[13]  J. Scofield,et al.  Simulating a Maxwellian plasma using an electron beam ion trap , 2000 .

[14]  K.,et al.  ASCA Observations of Temperature Structure and Metal Distribution in the Perseus Cluster of Galaxies , 2008 .

[15]  R. K. Smith,et al.  UPDATED ATOMIC DATA AND CALCULATIONS FOR X-RAY SPECTROSCOPY , 2012, 1207.0576.

[16]  S. Epp,et al.  X-ray resonant photoexcitation: linewidths and energies of Kα transitions in highly charged Fe ions. , 2013, Physical review letters.

[17]  K. Wong,et al.  ELECTRON-IMPACT EXCITATION CROSS-SECTION MEASUREMENTS OF HIGHLY CHARGED HELIUMLIKE AND LITHIUMLIKE IONS , 1995 .

[18]  F. Keenan,et al.  Energy levels, radiative rates and electron impact excitation rates for transitions in He-like Fe XXV, Co XXVI, Ni XXVII, Cu XXVIII and Zn XXIX , 2013 .

[19]  Toshikazu Shigeyama,et al.  Resonance Line Scattering Modifies X-Ray Surface Brightness of Elliptical Galaxies , 1998 .

[20]  W. Forman,et al.  Constraints on turbulent pressure in the X-ray halos of giant elliptical galaxies from resonant scattering , 2009, Proceedings of the International Astronomical Union.

[21]  Ryuichi Fujimoto,et al.  The Astro-H high resolution soft x-ray spectrometer , 2016, Astronomical Telescopes + Instrumentation.

[22]  J. Kaastra,et al.  Estimating turbulent velocities in the elliptical galaxies NGC 5044 and NGC 5813 , 2012, 1201.1910.

[23]  A. Finoguenov,et al.  Observations of asymmetric velocity fields and gas cooling in the NGC 4636 galaxy group X-ray halo , 2016, 1607.07444.

[24]  Matteo Guainazzi,et al.  The quiescent intracluster medium in the core of the Perseus cluster , 2016, Nature.

[25]  Norbert Werner,et al.  A uniform metal distribution in the intergalactic medium of the Perseus cluster of galaxies , 2013, Nature.

[26]  R. Sunyaev,et al.  Resonant scattering in galaxy clusters for anisotropic gas motions on various spatial scales , 2011, 1102.4098.

[27]  I P Grant,et al.  Gauge invariance and relativistic radiative transitions , 1974 .

[28]  X. Tong,et al.  The measurement of the dielectronic recombination in He-like Fe ions , 2001 .

[29]  S. Allen,et al.  Improved measurements of turbulence in the hot gaseous atmospheres of nearby giant elliptical galaxies , 2017, 1702.04364.

[30]  U. Maryland,et al.  Suzaku observation of the metallicity distribution in the elliptical galaxy NGC 4636 , 2009, ECSA 2010.

[31]  S. Allen,et al.  Azimuthally Resolved X-Ray Spectroscopy to the Edge of the Perseus Cluster , 2013, 1307.3592.

[32]  T. Watanabe,et al.  UV and X-ray spectroscopy of astrophysical and laboratory plasmas : proceedings of the Eleventh Colloquium on UV and X-Ray Spectroscopy of Astrophysical and Laboratory Plasmas held on May 29-June 2, 1995, Nagoya, Japan , 1996 .

[33]  Marilyn B. Schneider,et al.  Measurements of the contributions from high‐n dielectronic satellites to the Kα resonance line in heliumlike Fe24+ , 1992 .

[34]  Gregory V. Brown,et al.  Laboratory measurements of the dielectronic recombination satellite transitions of He-like Fe XXV and H-like Fe XXVI , 2012 .

[35]  F. Akimoto,et al.  Iron K-Line Analysis of Clusters of Galaxies With the Resonance Scattering Effect , 2000 .

[36]  D. Liedahl,et al.  Collisional Plasma Models with APEC/APED: Emission-Line Diagnostics of Hydrogen-like and Helium-like Ions , 2001, astro-ph/0106478.

[37]  R. Sunyaev,et al.  Resonant scattering in the Perseus Cluster: spectral model for constraining gas motions with Astro-H , 2013, 1308.1956.

[38]  W. T. Vestrand,et al.  High resolution soft X-ray spectroscopy of M 87 with the reflection grating spectrometers on XMM-Newton , 2002, astro-ph/0206249.

[39]  Britt Reichborn-Kjennerud,et al.  The EBEX Balloon-borne Experiment—Gondola, Attitude Control, and Control Software , 2017, The Astrophysical Journal Supplement Series.

[40]  Matteo Guainazzi,et al.  Solar abundance ratios of the iron-peak elements in the Perseus cluster , 2017, Nature.

[41]  J. Kaastra,et al.  X-ray emission from thin plasmas - Collisional ionization for atoms and ions of H to Zn , 2017, 1702.06007.

[42]  W. Forman,et al.  XMM-Newton Observations of the Perseus Cluster. I. The Temperature and Surface Brightness Structure , 2003 .

[43]  N. Badnell,et al.  Analog and digital simulations of Maxwellian plasmas for astrophysics , 2007 .

[44]  Makoto Sawada,et al.  Astro-H data analysis, processing and archive , 2016, Astronomical Telescopes + Instrumentation.

[45]  How Abundant Is Iron in the Core of the Perseus Cluster , 1998, astro-ph/9802067.

[46]  Jelle S. Kaastra,et al.  High- and Low-Energy Nonthermal X-Ray Emission from the Abell 2199 Cluster of Galaxies , 1999, astro-ph/9905209.

[47]  Sampson,et al.  Rapid relativistic distorted-wave approach for calculating cross sections for ionization of highly charged ions. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[48]  J. Rice,et al.  Measurements of the intercombination and forbidden lines from the spectra of helium-like ions in tokamaks and electron beam ion traps , 2008 .

[49]  Wong,et al.  Measurement of level-specific dielectronic-recombination cross sections of heliumlike Fe XXV. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[50]  W. B. Burton,et al.  The Leiden/Argentine/Bonn (LAB) Survey of Galactic HI - Final data release of the combined LDS and IAR surveys with improved stray-radiation corrections , 2005, astro-ph/0504140.

[51]  E. Landi,et al.  A NEW APPROACH TO ANALYZING SOLAR CORONAL SPECTRA AND UPDATED COLLISIONAL IONIZATION EQUILIBRIUM CALCULATIONS. II. UPDATED IONIZATION RATE COEFFICIENTS , 2008, 0805.3302.

[52]  N. Yamasaki,et al.  ASCA Observations of the Temperature Structure and Metal Distribution in the Perseus Cluster of Galaxies , 2001, astro-ph/0105241.

[53]  A. C. Fabian,et al.  Mapping small-scale temperature and abundance structures in the core of the Perseus cluster , 2003, astro-ph/0311502.

[54]  Alan H. Gabriel,et al.  Dielectronic Satellite Spectra for Highly-Charged Helium-Like Ion Lines , 1972 .

[55]  A. Edge,et al.  A very extended molecular web around NGC 1275 , 2011, 1105.3108.

[56]  C. Jones,et al.  XMM—Newton observations of the Perseus cluster — II. Evidence for gas motions in the core , 2004 .

[57]  Kosuke Sato,et al.  METAL-MASS-TO-LIGHT RATIOS OF THE PERSEUS CLUSTER OUT TO THE VIRIAL RADIUS , 2013, 1301.0655.