A RankMOEA to approximate the pareto front of a dynamic principal-agent model
暂无分享,去创建一个
Katya Rodríguez-Vázquez | Juan Arturo Herrera Ortiz | Itza T. Q. Curiel Cabral | Sonia Di Giannatale Menegalli | K. Rodríguez-Vázquez
[1] Ana Fernandes,et al. A Recursive Formulation for Repeated Agency with History Dependence , 2000, J. Econ. Theory.
[2] Cheng Wang. Incentives, CEO Compensation and Shareholder Wealth in a Dynamic Agency Model , 1997 .
[3] Arturo Hernández-Aguirre,et al. G-Metric: an M-ary quality indicator for the evaluation of non-dominated sets , 2008, GECCO 2008.
[4] Marco Laumanns,et al. SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .
[5] Qingfu Zhang,et al. Multiobjective optimization Test Instances for the CEC 2009 Special Session and Competition , 2009 .
[6] Michael P. Fourman,et al. Compaction of Symbolic Layout Using Genetic Algorithms , 1985, ICGA.
[7] K. Judd. Numerical methods in economics , 1998 .
[8] Lothar Thiele,et al. A Tutorial on the Performance Assessment of Stochastic Multiobjective Optimizers , 2006 .
[9] Christopher R. Stephens,et al. Limitations of Existing Mutation Rate Heuristics and How a Rank GA Overcomes Them , 2009, IEEE Transactions on Evolutionary Computation.
[10] Gary B. Lamont,et al. Evolutionary Algorithms for Solving Multi-Objective Problems (Genetic and Evolutionary Computation) , 2006 .
[11] David Corne,et al. The Pareto archived evolution strategy: a new baseline algorithm for Pareto multiobjective optimisation , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).
[12] Marco Laumanns,et al. Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..
[13] Kalyanmoy Deb,et al. A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimisation: NSGA-II , 2000, PPSN.
[14] Sanjay Srivastava,et al. On Repeated Moral Hazard with Discounting , 1987 .
[15] David E. Goldberg,et al. Genetic Algorithms in Search Optimization and Machine Learning , 1988 .
[16] Bernard Chazelle,et al. A minimum spanning tree algorithm with inverse-Ackermann type complexity , 2000, JACM.
[17] K. Deb. An Efficient Constraint Handling Method for Genetic Algorithms , 2000 .
[18] Lothar Thiele,et al. Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.
[19] Gary B. Lamont,et al. Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.
[20] C. Fonseca,et al. GENETIC ALGORITHMS FOR MULTI-OBJECTIVE OPTIMIZATION: FORMULATION, DISCUSSION, AND GENERALIZATION , 1993 .
[21] Lothar Thiele,et al. An evolutionary algorithm for multiobjective optimization: the strength Pareto approach , 1998 .