Spin-s quantum chains and Temperley-Lieb algebras

The authors construct a family of isotropic spin-s quantum chains consisting of sums of operators satisfying a Temperley-Lieb algebra. Exact values for the infinite lattice limit of the ground-state energy per site and for the (non-zero) gap to the lowest energy excited state follow from the Temperley-Lieb equivalence with a Bethe ansatz soluble XXZ model. The family of spin chains includes the biquadratic spin-1 model.

[1]  Andreas Klümper,et al.  New Results for q-State Vertex Models and the Pure Biquadratic Spin-1 Hamiltonian , 1989 .

[2]  E. Sklyanin Boundary conditions for integrable quantum systems , 1988 .

[3]  M. N. Barber,et al.  Conformal invariance, the XXZ chain and the operator content of two-dimensional critical systems , 1988 .

[4]  C. Hamer Q-state Potts models in Hamiltonian field theory for Q⩾4 in (1+1) dimensions , 1981 .

[5]  M. Gaudin,et al.  Anisotropic Linear Magnetic Chain , 1966 .

[6]  B. McCoy,et al.  Low-Temperature Thermodynamics of the |?|=1 Heisenberg-Ising Ring , 1972 .

[7]  Jian-Miin Liu,et al.  Two‐magnon excitations in quantum spin chains , 1988 .

[8]  Aleksander L Owczarek,et al.  A class of interaction-round-a-face models and its equivalence with an ice-type model , 1987 .

[9]  Kennedy,et al.  Rigorous results on valence-bond ground states in antiferromagnets. , 1987, Physical review letters.

[10]  N. Papanicolaou Unusual phases in quantum spin-1 systems , 1988 .

[11]  B. Sutherland Model for a multicomponent quantum system , 1975 .

[12]  A. Chubukov,et al.  The two-magnon bound states spectrum in generalised ferromagnetic chains , 1987 .

[13]  I. Affleck Exact results on the dimerisation transition in SU(n) antiferromagnetic chains , 1990 .

[14]  P. Pfeuty,et al.  Renormalization-group study of the Hamiltonian version of the Potts model , 1981 .

[15]  Chen Ning Yang,et al.  One-Dimensional Chain of Anisotropic Spin-Spin Interactions. II. Properties of the Ground-State Energy Per Lattice Site for an Infinite System , 1966 .

[16]  E. Lieb,et al.  Valence bond ground states in isotropic quantum antiferromagnets , 1988 .

[17]  E. Berkcan On the order-disorder variables, duality and the functional inversion relation , 1983 .

[18]  M. Gaudin La fonction d'onde de Bethe , 1983 .

[19]  C. Hamer,et al.  Surface energy of integrable quantum spin chains , 1990 .

[20]  Barber,et al.  Spectrum of the biquadratic spin-1 antiferromagnetic chain. , 1989, Physical review. B, Condensed matter.

[21]  Elliott H Lieb,et al.  Relations between the ‘percolation’ and ‘colouring’ problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the ‘percolation’ problem , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[22]  B. McCoy,et al.  LEVEL CROSSING, SPONTANEOUS PARITY VIOLATION, HIGH Tc SUPERCONDUCTIVITY MECHANISMS AND THE CHIRAL POTTS CHAIN , 1990 .

[23]  R. Baxter,et al.  Surface exponents of the quantum XXZ, Ashkin-Teller and Potts models , 1987 .

[24]  H. Babujian Exact solution of the isotropic Heisenberg chain with arbitrary spins: Thermodynamics of the model , 1983 .

[25]  L. Takhtajan The picture of low-lying excitations in the isotropic Heisenberg chain of arbitrary spins , 1982 .