A kinetic model for the transport of electrons in a graphene layer

In this article, a kinetic model for the transport of electrons in graphene is derived with the tools of semiclassical analysis. The underlying quantum model is a massless Dirac equation, whose eigenvalues display a conical singularity responsible for non adiabatic transitions between the two modes. Our kinetic model takes the form of two Boltzmann equations coupled by a collision operator modeling these transitions. This collision term includes a Landau-Zener transfer term and a jump operator whose presence is essential in order to ensure a good energy conservation during the transitions. We propose an algorithmic realization of the semi-group solving the kinetic model, by a particle method. In the last section, a series of numerical experiments are given in order to study the influences of the various sources of errors between the quantum and the kinetic models.

[1]  Mark Lundstrom,et al.  Low Bias Transport in Graphene: An Introduction (lecture notes) , 2009 .

[2]  André Martinez,et al.  Twisted Pseudodifferential Calculus and Application to the Quantum Evolution of Molecules , 2008, 0809.3663.

[3]  Shi Jin,et al.  The Landau-Zener transition and the surface hopping method for the 2D Dirac equation for graphene , 2015, 1505.05988.

[4]  S. Sarma,et al.  Electronic transport in two-dimensional graphene , 2010, 1003.4731.

[5]  P. Markowich,et al.  Homogenization limits and Wigner transforms , 1997 .

[6]  P. Gérard,et al.  Mesures semi-classiques et croisement de modes , 2000 .

[7]  Stefan Teufel,et al.  Propagation through conical crossings: An asymptotic semigroup , 2005 .

[8]  C. Lasser,et al.  An Egorov Theorem for Avoided Crossings of Eigenvalue Surfaces , 2016, 1605.03520.

[9]  S. Sternberg,et al.  Semi-Classical Analysis , 2013 .

[10]  C. Zener Non-Adiabatic Crossing of Energy Levels , 1932 .

[11]  Eric Leichtnam,et al.  Ergodic properties of eigenfunctions for the Dirichlet problem , 1993 .

[12]  Richard Beals,et al.  On the boundedness of pseudodifferential operators , 1977 .

[13]  P. Gérard,et al.  Wigner Measure Propagation and Conical Singularity for General Initial Data , 2012, Archive for Rational Mechanics and Analysis.

[14]  Stefan Teufel,et al.  Adiabatic Decoupling and Time-Dependent Born–Oppenheimer Theory , 2001 .

[15]  George A. Hagedorn,et al.  Landau-Zener transitions through small electronic eigenvalue gaps in the Born-Oppenheimer approximation , 1998 .

[16]  Marcus Weber,et al.  Monte Carlo sampling of Wigner functions and surface hopping quantum dynamics , 2009, J. Comput. Phys..

[17]  C. Lasser,et al.  Single switch surface hopping for molecular quantum dynamics , 2012, Journal of Mathematical Chemistry.

[18]  Mouez Dimassi,et al.  Spectral asymptotics in the semi-classical limit , 1999 .

[19]  C. Kammerer Normal forms for conical intersections in quantum chemistry , 2007 .

[20]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[21]  Caroline Lasser,et al.  Single switch surface hopping for molecular dynamics with transitions. , 2008, The Journal of chemical physics.

[22]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[23]  Patrick Gérard,et al.  A Landau-Zener Formula for Non-Degenerated Involutive Codimension 3 Crossings , 2003 .

[24]  P. Dollfus,et al.  Quantum transport of Dirac fermions in graphene field effect transistors , 2010, 2010 International Conference on Simulation of Semiconductor Processes and Devices.

[25]  M. I. Katsnelson,et al.  Chiral tunnelling and the Klein paradox in graphene , 2006 .

[26]  E. Hairer,et al.  Geometric Numerical Integration , 2022, Oberwolfach Reports.

[27]  Serge Alinhac,et al.  Pseudo-differential Operators and the Nash-Moser Theorem , 2007 .

[28]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[29]  George A. Hagedorn,et al.  Molecular propagation through electron energy level crossings , 1994 .

[30]  Y. D. Verdière The level crossing problem in semi-classical analysis , 2003 .

[31]  O. Morandi,et al.  Wigner model for quantum transport in graphene , 2011, 1102.2416.

[32]  Caroline Lasser,et al.  Propagation through Generic Level Crossings: A Surface Hopping Semigroup , 2008, SIAM J. Math. Anal..

[33]  Y. D. Verdière The level crossing problem in semi-classical analysis I. The symmetric case , 2003 .

[34]  Florian M'ehats,et al.  Analysis of models for quantum transport of electrons in graphene layers , 2013, 1308.1219.

[35]  R. Vaillancourt,et al.  On the boundedness of pseudo-differential operators , 1971 .

[36]  Stefan Grosskinsky Warwick,et al.  Interacting Particle Systems , 2016 .

[37]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.