Low-dimensional singularities with free divisors as discriminants

We present versal complex analytic families, over a smooth base and of fibre dimension zero, one, or two, where the discriminant constitutes a free divisor. These families include finite flat maps, versal deformations of reduced curve singularities, and versal deformations of Gorenstein surface singularities in C^5. It is shown that such free divisors often admit a "fast normalization", obtained by a single application of the Grauert-Remmert normalization algorithm. For a particular Gorenstein surface singularity in C^5, namely the simple elliptic singularity of type \tilde A_4, we exhibit an explicit discriminant matrix and show that the slice of the discriminant for a fixed j-invariant is the cone over the dual variety of an elliptic curve.

[1]  B. Z. Moroz,et al.  london mathematical society lecture note series , 2007 .

[2]  J. Damon,et al.  ON THE LEGACY OF FREE DIVISORS III: FUNCTIONS AND DIVISORS ON COMPLETE INTERSECTIONS , 2006 .

[3]  C. D'Andrea,et al.  On the Jacobian ideal of the binary discriminant (with an appendix by Abdelmalek Abdesselam) , 2006, math/0601705.

[4]  R. Buchweitz,et al.  Linear Free Divisors and Quiver Representations , 2005, math/0509221.

[5]  R. Buchweitz,et al.  A Semiregularity Map for Modules and Applications to Deformations , 1999, Compositio Mathematica.

[6]  J. Damon On the Legacy of Free Divisors II: Free* Divisors and Complete Intersections , 2003 .

[7]  J. Damon On the freeness of equisingular deformations of plane curve singularities , 2002 .

[8]  S. Azam Extended Affine Root Systems , 2002 .

[9]  D. Straten,et al.  The Structure of the Discriminant of Some Space‐Curve Singularities , 2001 .

[10]  James Damon,et al.  Nonlinear Sections of Nonisolated Complete Intersections , 2001 .

[11]  M. Bertola Frobenius manifold structure on orbit space of Jacobi groups; Part II , 2000 .

[12]  M. Bertola Jacobi Groups, Jacobi Forms and Their Applications , 1999 .

[13]  J. Damon On the legacy of free divisors: discriminants and Morse-type singularities , 1998 .

[14]  Wolmer V. Vasconcelos,et al.  Computational methods in commutative algebra and algebraic geometry , 1997, Algorithms and computation in mathematics.

[15]  T. D. Jong An Algorithm for Computing the Integral Closure , 1997, Journal of symbolic computation.

[16]  V. Goryunov Functions on Space Curves , 1997, math/9708213.

[17]  P. Wilson,et al.  DISCRIMINANTS, RESULTANTS AND MULTIDIMENSIONAL DETERMINANTS (Mathematics: Theory and Applications) , 1996 .

[18]  D. Straten A note on the discriminant of a space curve , 1995 .

[19]  B. Dubrovin Geometry of 2D topological field theories , 1994, hep-th/9407018.

[20]  I. M. Gelʹfand,et al.  Discriminants, Resultants, and Multidimensional Determinants , 1994 .

[21]  W. Vasconcelos Arithmetic of Blowup Algebras , 1994 .

[22]  P. Orlik,et al.  Arrangements Of Hyperplanes , 1992 .

[23]  K. Wirthmüller Root systems and Jacobi forms , 1992 .

[24]  Wolmer V. Vasconcelos,et al.  Computing the integral closure of an affine domain , 1991 .

[25]  A. Aleksandrov Nonisolated hypersurface singularities , 1990 .

[26]  Kyoji Saito Extended affine root systems II (flat invariants) , 1990 .

[27]  B. Ulrich,et al.  The structure of linkage , 1987 .

[28]  A. Aleksandrov Euler-homogeneous singularities and logarithmic differential forms , 1986 .

[29]  Klaus Hulek,et al.  Projective geometry of elliptic curves , 1986 .

[30]  John W. Bruce ISOLATED SINGULAR POINTS ON COMPLETE INTERSECTIONS (London Mathematical Society Lecture Note Series, 77) , 1985 .

[31]  Eduard Looijenga,et al.  Isolated Singular Points on Complete Intersections , 1984 .

[32]  R. Remmert,et al.  Coherent Analytic Sheaves , 1984 .

[33]  J. Mérindol Les singularités simples elliptiques, leurs déformations, les surfaces de del Pezzo et les transformations quadratiques , 1982 .

[34]  Hubert Flenner Ein Kriterium für die Offenheit der Versalität , 1981 .

[35]  Kyoji Saito Theory of logarithmic differential forms and logarithmic vector fields , 1980 .

[36]  J. Herzog Deformation von Cohen-Macaulay Algebren. , 1980 .

[37]  Kyoji Saito,et al.  On a certain generator system of the ring of invariants of a finite reflection group , 1980 .

[38]  R. Waldi Deformation von Gorenstein-Singularitäten der Kodimension 3 , 1979 .

[39]  C. Okonek DasK(π, 1)-Problem für die affinen Wurzelsysteme vom TypAn,Cn , 1979 .

[40]  E. Looijenga On the semi-universal deformation of a simple-elliptic hypersurface singularity Part II: the discriminant , 1978 .

[41]  David Mumford,et al.  Some footnotes to the work of C , 1978 .

[42]  V. Arnold A correction to: Wave front evolution and equivariant morse lemma , 1977 .

[43]  M. Schaps DEFORMATIONS OF COHEN-MACAULAY SCHEMES OF CODIMENSION 2 AND NON-SINGULAR DEFORMATIONS OF SPACE CURVES. , 1977 .

[44]  E. Looijenga On the semi-universal deformation of a simple-elliptic hypersurface singularity: Part I: Unimodularity , 1977 .

[45]  Vladimir I. Arnold,et al.  Wave front evolution and equivariant Morse lemma , 1976 .

[46]  E. Looijenga Root systems and elliptic curves , 1976 .

[47]  Kyoji Saito Einfach-elliptische Singularitäten , 1974 .

[48]  H. Pinkham Deformations of algebraic varieties with G[m] action , 1974 .

[49]  M. Artin,et al.  Residual intersections in Cohen-Macauley rings , 1972 .

[50]  J. Fogarty ALGEBRAIC FAMILIES ON AN ALGEBRAIC SURFACE. , 1968 .

[51]  Michael Atiyah,et al.  Vector Bundles Over an Elliptic Curve , 1957 .

[52]  G. Frobenius,et al.  Ueber die Differentiation der elliptischen Functionen nach den Perioden und Invarianten. , 1882 .