MHD flow and heat transfer of a micropolar fluid over a nonlinear stretching surface with variable surface heat flux and heat generation

An analysis has been carried out to study magnetohydrodynamic boundary layer flow and heat transfer of an electrically conducting micropolar fluid over a nonlinear stretching surface with variable wall heat flux in the presence of heat generation/absorption and a non-uniform transverse magnetic field. The governing system of partial differential equations is first transformed into a system of ordinary differential equations using similarity transformation. The transformed equations are solved numerically. Results for the dimensionless velocity, micro-rotation, and temperature profiles are displayed graphically delineating the effects of various parameters characterising the flow. The results show that the velocity profile decreases as the magnetic parameter and the velocity exponent increase, while it increases as the material parameter increases. The results show also that the temperature profile increases as the magnetic parameter, the velocity exponent, and the heat generation parameter increase. Furthermore, the temperature profile decreases as the material parameter, the heat absorption parameter, and the Prandtl number increase. Une analyse a ete realisee pour etudier magnetohydrodynamique ecoulement de couche limite et transfert de chaleur d'un conducteur electrique fluide micropolaire sur une surface s'etendant avec la chaleur paroi variable flux en presence de chaleur generation / absorption. Le systeme qui regit des equations aux derivees partielles est d'abord transforme en un systeme de equations differentielles ordinaires en utilisant similitude de transformation. Les equations sont resolues numeriquement. Resultats pour la vitesse sans dimension , micro-rotation et profils de temperature sont affiches graphique definissant les effets de divers parametres caracterisant l'ecoulement. Les resultats montrent que le profil de vitesse diminue a mesure que le champ magnetique parametres et l'exposant de la vitesse augmentent , alors qu'il augmente a mesure que les augmentations de parametres du materiau. L' resultats montrent egalement que le profil de temperature augmente a mesure que la parametre magnetique, l'exposant de vitesse et la generation de chaleur parametre augmentent. En outre, le profil de temperature diminue a mesure que la parametre du materiau, la chaleur parametre d'absorption et le nombre de Prandtl augmentent.

[1]  I. Pop,et al.  Boundary-layer flow of a micropolar fluid on a continuous moving or fixed surface , 2006 .

[2]  P. S. Datti,et al.  MHD visco-elastic fluid flow over a non-isothermal stretching sheet , 2004 .

[3]  I. Pop,et al.  Boundary-layer flow of a micropolar fluid on a continuously moving or fixed permeable surface , 2007 .

[4]  Ali J. Chamkha MHD FLOW OF A UNIFORMLY STRETCHED VERTICAL PERMEABLE SURFACE IN THE PRESENCE OF HEAT GENERATION/ABSORPTION AND A CHEMICAL REACTION , 2003 .

[5]  M. Mahmoud,et al.  Hydromagnetic boundary layer micropolar fluid flow over a stretching surface embedded in a non-darcian porous medium with radiation , 2006 .

[6]  Andrew P. Bassom,et al.  The Blasius boundary-layer flow of a micropolar fluid , 1996 .

[7]  J. C. Misra,et al.  Unsteady flow of blood through narrow blood vessels— a mathematical analysis , 1992 .

[8]  A. Eringen,et al.  Wave Propagation in Nematic Liquid Crystals , 1971 .

[9]  G. Hsiao,et al.  A Neumann series representation for solutions to boundary-value problems in dynamic elasticity , 1975 .

[10]  Y. J. Kim Thermal boundary layer flow of a micropolar fluid past a wedge with constant wall temperature , 1999 .

[11]  H. Takhar,et al.  Flow of micropolar fluid past a continuously moving plate , 1983 .

[12]  Neil A. Kelson,et al.  Micropolar flow over a porous stretching sheet with strong suction or injection , 2001 .

[13]  M. Ali,et al.  On thermal boundary layer on a power-law stretched surface with suction or injection , 1995 .

[14]  F. Hady,et al.  Short communication on the solution of heat transfer to micropolar fluid from a non‐isothermal stretching sheet with injection , 1996 .

[15]  M. Mahmoud Heat Generation/Absorption and Viscous Dissipation Effects on MHD Flow of a Micropolar Fluid Over a Moving Permeable Surface Embedded in a Non-Darcian Porous Medium , 2009 .

[16]  I. Pop,et al.  MHD boundary-layer flow of a micropolar fluid past a wedge with constant wall heat flux , 2009 .

[17]  Goodarz Ahmadi,et al.  Self-similar solution of imcompressible micropolar boundary layer flow over a semi-infinite plate , 1976 .

[18]  A. Kaye,et al.  Numerical solution of time dependent stratified two-phase flow of micropolar fluids and its application to flow of blood through fine capillaries , 1985 .

[19]  A. Gupta,et al.  HYDROMAGNETIC FLOW AND HEAT TRANSFER OVER A STRETCHING SHEET , 1979 .

[20]  P. M. Patil,et al.  Effects of chemical reaction on free convective flow of a polar fluid through a porous medium in the presence of internal heat generation , 2008 .

[21]  Eugen Magyari,et al.  Heat and mass transfer characteristics of the self-similar boundary-layer flows induced by continuous surfaces stretched with rapidly decreasing velocities , 2001 .

[22]  I. Pop,et al.  Boundary-layer flow of a micropolar fluid due to a stretching wall , 1997 .

[23]  Ali J. Chamkha,et al.  Transient Laminar MHD Free Convective Flow past a Vertical Cone with Non-Uniform Surface Heat Flux , 2009 .

[24]  Eugen Magyari,et al.  Heat transfer characteristics of the separation boundary flow induced by a continuous stretching surface , 1999 .

[25]  A. Cemal Eringen,et al.  Theory of thermomicrofluids , 1972 .

[26]  R. Chaudhary,et al.  Combined heat and mass transfer in magneto‐micropolar fluid flow from radiate surface with variable permeability in slip‐flow regime , 2007 .

[27]  Ali J. Chamkha,et al.  Combined effect of heat generation or absorption and first-order chemical reaction on micropolar fluid flows over a uniformly stretched permeable surface , 2009 .

[28]  Rama Bhargava,et al.  Finite element solution of mixed convection micropolar flow driven by a porous stretching sheet , 2003 .

[29]  R. Cortell Flow and heat transfer of a fluid through a porous medium over a stretching surface with internal heat generation/absorption and suction/blowing , 2005 .

[30]  R. Kandasamy,et al.  Chemical reaction, heat and mass transfer on MHD flow over a vertical stretching surface with heat source and thermal stratification effects , 2005 .

[31]  E. F. Elshehawey,et al.  Chebyshev finite-difference method for the effects of Hall and ion-slip currents on magneto-hydrodynamic flow with variable thermal conductivity , 2004 .

[32]  T. Ariman,et al.  Applications of microcontinuum fluid mechanics , 1974 .

[33]  K. Vajravelu,et al.  Viscous flow over a nonlinearly stretching sheet , 2001, Appl. Math. Comput..

[34]  A. Tamayol,et al.  Thermal Analysis of Flow in a Porous Medium Over a Permeable Stretching Wall , 2010 .

[35]  I. Pop,et al.  Flow of a micropolar fluid on a continuous moving surface , 2006 .

[36]  M. Rahman,et al.  Heat Transfer in a Micropolar Fluid along a Non-linear Stretching Sheet with a Temperature-Dependent Viscosity and Variable Surface Temperature , 2009 .

[37]  T. Ariman On the analysis of blood flow. , 1971, Journal of biomechanics.

[38]  S. J. Allen,et al.  Concentration effects in oscillatory blood flow. , 1969, Biorheology.

[39]  E. M. A. Elbashbeshy,et al.  Heat transfer over a stretching surface with variable surface heat flux , 1998 .

[40]  A. Cemal Eringen,et al.  Boundary Effects of Orientation of Nematic Liquid Crystals , 1971 .

[41]  T. Hayat,et al.  Mixed convection flow of a micropolar fluid over a non-linearly stretching sheet , 2008 .

[42]  T. Ariman,et al.  Microcontinuum fluid mechanics—A review , 1973 .

[43]  A. Raptis Flow of a micropolar fluid past a continuously moving plate by the presence of radiation , 1998 .

[44]  K. A. Kline A spin-vorticity relation for unidirectional plane flows of micropolar fluids , 1977 .

[45]  L. Crane Flow past a stretching plate , 1970 .

[46]  I. Pop,et al.  Heat transfer over a stretching surface with variable heat flux in micropolar fluids , 2008 .

[47]  M. M. Rahman,et al.  Radiative Heat Transfer Flow of Micropolar Fluid with Variable Heat Flux in a Porous Medium , 2008 .

[48]  Neil A. Kelson,et al.  Effect of surface conditions on flow of a micropolar fluid driven by a porous stretching sheet , 2001 .

[49]  I. Pop,et al.  Unsteady mixed convection flow of a micropolar fluid near the stagnation point on a vertical surface , 2006 .

[50]  M. Ali The buoyancy effects on the boundary layers induced by continuous surfaces stretched with rapidly decreasing velocities , 2004 .

[51]  C. H. Chen,et al.  Mixed convection cooling of a heated, continuously stretching surface , 2000 .

[52]  M. Mahmoud Thermal radiation effects on MHD flow of a micropolar fluid over a stretching surface with variable thermal conductivity , 2007 .

[53]  Rafael Cortell Bataller,et al.  Similarity solutions for flow and heat transfer of a quiescent fluid over a nonlinearly stretching surface , 2008 .

[54]  S. Kassem,et al.  MHD free convection flow of a micropolar fluid past a vertical porous plate , 2002 .