Microsupercapacitors as miniaturized energy-storage components for on-chip electronics.

The push towards miniaturized electronics calls for the development of miniaturized energy-storage components that can enable sustained, autonomous operation of electronic devices for applications such as wearable gadgets and wireless sensor networks. Microsupercapacitors have been targeted as a viable route for this purpose, because, though storing less energy than microbatteries, they can be charged and discharged much more rapidly and have an almost unlimited lifetime. In this Review, we discuss the progress and the prospects of integrated miniaturized supercapacitors. In particular, we discuss their power performances and emphasize the need of a three-dimensional design to boost their energy-storage capacity. This is obtainable, for example, through self-supported nanostructured electrodes. We also critically evaluate the performance metrics currently used in the literature to characterize microsupercapacitors and offer general guidelines to benchmark performances towards prospective applications.

[1]  B. Conway,et al.  Diagnostic analyses for mechanisms of self-discharge of electrochemical capacitors and batteries , 1997 .

[2]  J. Talbot,et al.  An Analysis of the Binder Formation in Electrophoretic Deposition , 1998 .

[3]  B. Conway Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications , 1999 .

[4]  Young Soo Yoon,et al.  Solid-state thin-film supercapacitor with ruthenium oxide and solid electrolyte thin films , 2001 .

[5]  Wendy G. Pell,et al.  Analysis of power limitations at porous supercapacitor electrodes under cyclic voltammetry modulation and dc charge , 2001 .

[6]  Young Soo Yoon,et al.  Thin Film Supercapacitors Using a Sputtered RuO2 Electrode , 2001 .

[7]  Young Soo Yoon,et al.  All solid-state rechargeable thin-film microsupercapacitor fabricated with tungsten cosputtered ruthenium oxide electrodes , 2003 .

[8]  Wei Zhou,et al.  Nanoporous carbide-derived carbon with tunable pore size , 2003, Nature materials.

[9]  Kun-Hong Lee,et al.  Fabrication of microcapacitors using conducting polymer microelectrodes , 2003 .

[10]  Kun-Hong Lee,et al.  Fabrication of all-solid-state electrochemical microcapacitors , 2004 .

[11]  Bruce Dunn,et al.  Three-dimensional battery architectures. , 2004, Chemical reviews.

[12]  Kun-Hong Lee,et al.  Flexible micro-supercapacitors , 2006 .

[13]  P. Taberna,et al.  Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer , 2006, Science.

[14]  H. Reichl,et al.  Assembly and Hermetic Encapsulation of Wafer Level Secondary Batteries , 2006, 19th IEEE International Conference on Micro Electro Mechanical Systems.

[15]  Seunghun Hong,et al.  Nanotube electronics: a flexible approach to mobility. , 2007, Nature nanotechnology.

[16]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[17]  D. Steingart,et al.  Dispenser Printed Electrochemical Capacitors for Power Management of Millimeter Scale Lithium Ion Polymer Microbatteries for Wireless Sensors , 2009 .

[18]  Herbert Reichl,et al.  Development of near hermetic silicon/glass cavities for packaging of integrated lithium micro batteries , 2009, 2009 Symposium on Design, Test, Integration & Packaging of MEMS/MOEMS.

[19]  M. Esashi,et al.  Wafer level packaging of MEMS , 2008, TRANSDUCERS 2009 - 2009 International Solid-State Sensors, Actuators and Microsystems Conference.

[20]  Peihua Huang,et al.  Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. , 2010, Nature nanotechnology.

[21]  P. Taberna,et al.  Monolithic Carbide-Derived Carbon Films for Micro-Supercapacitors , 2010, Science.

[22]  Norbert Fabre,et al.  Elaboration of a microstructured inkjet-printed carbon electrochemical capacitor , 2010 .

[23]  John R. Miller,et al.  Graphene Double-Layer Capacitor with ac Line-Filtering Performance , 2010, Science.

[24]  Y. Gogotsi,et al.  True Performance Metrics in Electrochemical Energy Storage , 2011, Science.

[25]  Feiyu Kang,et al.  A high-performance three-dimensional micro supercapacitor based on self-supporting composite materia , 2011 .

[26]  Yury Gogotsi,et al.  The properties and applications of nanodiamonds. , 2011, Nature nanotechnology.

[27]  Lydie Viau,et al.  Ionogels, ionic liquid based hybrid materials. , 2011, Chemical Society reviews.

[28]  P. Ajayan,et al.  Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. , 2011, Nature nanotechnology.

[29]  P. Soudan,et al.  Solid‐State Electrode Materials with Ionic‐Liquid Properties for Energy Storage: the Lithium Solid‐State Ionic‐Liquid Concept. , 2011 .

[30]  Akihiko Hirata,et al.  Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. , 2011, Nature nanotechnology.

[31]  Phl Peter Notten,et al.  All‐Solid‐State Lithium‐Ion Microbatteries: A Review of Various Three‐Dimensional Concepts , 2011 .

[32]  Chunlei Wang,et al.  Micro-supercapacitors based on three dimensional interdigital polypyrrole/C-MEMS electrodes , 2011 .

[33]  Ionogels, Ionic Liquid Based Hybrid Materials , 2011 .

[34]  Alejandro Criado,et al.  Inside Cover: [16]Cloverphene: a Clover‐Shaped cata‐Condensed Nanographene with Sixteen Fused Benzene Rings (Angew. Chem. Int. Ed. 1/2012) , 2012 .

[35]  D. Pech,et al.  Wafer-level fabrication process for fully encapsulated micro-supercapacitors with high specific energy , 2012 .

[36]  Zhong Lin Wang,et al.  Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems. , 2012, Angewandte Chemie.

[37]  Yiqing Sun,et al.  Ultrahigh-rate supercapacitors based on eletrochemically reduced graphene oxide for ac line-filtering , 2012, Scientific Reports.

[38]  M. Beidaghi,et al.  Micro‐Supercapacitors Based on Interdigital Electrodes of Reduced Graphene Oxide and Carbon Nanotube Composites with Ultrahigh Power Handling Performance , 2012 .

[39]  Xu Xiao,et al.  Paper-based supercapacitors for self-powered nanosystems. , 2012, Angewandte Chemie.

[40]  Z. Wang Self‐Powered Nanosensors and Nanosystems , 2012, Advanced materials.

[41]  M. El‐Kady,et al.  Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors , 2012, Science.

[42]  Pierre-Louis Taberna,et al.  On-chip micro-supercapacitors for operation in a wide temperature range , 2013 .

[43]  Paul V Braun,et al.  High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes , 2013, Nature Communications.

[44]  Zheng Yan,et al.  3-Dimensional graphene carbon nanotube carpet-based microsupercapacitors with high electrochemical performance. , 2013, Nano letters.

[45]  A. Ponrouch,et al.  Ultra high capacitance values of Pt@RuO2 core–shell nanotubular electrodes for microsupercapacitor applications , 2013 .

[46]  A. Balducci,et al.  Ionic liquids in supercapacitors , 2013 .

[47]  D. Pech,et al.  Influence of the configuration in planar interdigitated electrochemical micro-capacitors , 2013 .

[48]  Yusuke Yamauchi,et al.  Synthesis of electro-deposited ordered mesoporous RuOx using lyotropic liquid crystal and application toward micro-supercapacitors , 2013 .

[49]  S. Lofland,et al.  Micro-supercapacitors from carbide derived carbon (CDC) films on silicon chips , 2013 .

[50]  Naoki Nitta,et al.  Lithographically patterned thin activated carbon films as a new technology platform for on-chip devices. , 2013, ACS nano.

[51]  M. El‐Kady,et al.  Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage , 2013, Nature Communications.

[52]  Jian Yan,et al.  Manganese oxide micro-supercapacitors with ultra-high areal capacitance. , 2013, Nanoscale.

[53]  F. Kang,et al.  Direct Prototyping of Patterned Nanoporous Carbon: A Route from Materials to On-chip Devices , 2013, Scientific Reports.

[54]  Klaus Müllen,et al.  Graphene-based in-plane micro-supercapacitors with high power and energy densities , 2013, Nature Communications.

[55]  Y. Gogotsi,et al.  Carbon Onions: Synthesis and Electrochemical Applications , 2013 .

[56]  Xingbin Yan,et al.  Superior Micro‐Supercapacitors Based on Graphene Quantum Dots , 2013 .

[57]  J. Bae,et al.  TLM-PSD model for optimization of energy and power density of vertically aligned carbon nanotube supercapacitor , 2013, Scientific Reports.

[58]  H. Scott Matthews,et al.  Smart Everything: Will Intelligent Systems Reduce Resource Use? , 2013 .

[59]  D. Pech,et al.  Hydrous RuO2/carbon nanowalls hierarchical structures for all-solid-state ultrahigh-energy-density micro-supercapacitors , 2014 .

[60]  Klaus Müllen,et al.  Photolithographic fabrication of high-performance all-solid-state graphene-based planar micro-supercapacitors with different interdigital fingers , 2014 .

[61]  Saïd Sadki,et al.  Are tomorrow's micro-supercapacitors hidden in a forest of silicon nanotrees? , 2014 .

[62]  Zheng You,et al.  Fabrication of a symmetric micro supercapacitor based on tubular ruthenium oxide on silicon 3D microstructures , 2014 .

[63]  G. Bidan,et al.  SiNWs-based electrochemical double layer micro-supercapacitors with wide voltage window (4 V) and long cycling stability using a protic ionic liquid electrolyte , 2014 .

[64]  Roya Maboudian,et al.  High-performance all solid-state micro-supercapacitor based on patterned photoresist-derived porous carbon electrodes and an ionogel electrolyte , 2014 .

[65]  Genevieve Dion,et al.  Textile energy storage in perspective , 2014 .

[66]  J. Tour,et al.  Laser-induced porous graphene films from commercial polymers , 2014, Nature Communications.

[67]  Christoph E. Nebel,et al.  Highly porous diamond foam as a thin-film micro-supercapacitor material , 2014 .

[68]  Hui-Ming Cheng,et al.  Recent advances in graphene-based planar micro-supercapacitors for on-chip energy storage , 2014 .

[69]  Keryn Lian,et al.  Proton-conducting polymer electrolytes and their applications in solid supercapacitors: a review , 2014 .

[70]  Kevin Armstrong,et al.  High-resolution on-chip supercapacitors with ultra-high scan rate ability , 2014 .

[71]  G. Bidan,et al.  Wide-voltage-window silicon nanowire electrodes for micro-supercapacitors via electrochemical surface oxidation in ionic liquid electrolyte , 2014 .

[72]  N. A. Kyeremateng Self‐Organised TiO2 Nanotubes for 2D or 3D Li‐Ion Microbatteries , 2014 .

[73]  Michael J Cima,et al.  Next-generation wearable electronics , 2014, Nature Biotechnology.

[74]  Majid Beidaghi,et al.  Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of micro-supercapacitors , 2014 .

[75]  T. Brousse,et al.  All Solid-State Symmetrical Activated Carbon Electrochemical Double Layer Capacitors Designed with Ionogel Electrolyte , 2014 .

[76]  Husam N. Alshareef,et al.  Conducting polymer micro-supercapacitors for flexible energy storage and Ac line-filtering , 2015 .

[77]  Masayoshi Esashi,et al.  On‐Chip Micro‐Pseudocapacitors for Ultrahigh Energy and Power Delivery , 2015, Advanced science.

[78]  K. Moon,et al.  Alternating current line-filter based on electrochemical capacitor utilizing template-patterned graphene , 2015, Scientific Reports.

[79]  David Pech,et al.  3D RuO2 Microsupercapacitors with Remarkable Areal Energy , 2015, Advanced materials.

[80]  T. Brousse,et al.  MnO2 Thin Films on 3D Scaffold: Microsupercapacitor Electrodes Competing with “Bulk” Carbon Electrodes , 2015 .

[81]  Jee Youn Hwang,et al.  Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-performance integrated energy storage , 2015, Proceedings of the National Academy of Sciences.

[82]  Junwei Lang,et al.  Engineering the Electrochemical Capacitive Properties of Microsupercapacitors Based on Graphene Quantum Dots/MnO2 Using Ionic Liquid Gel Electrolytes. , 2015, ACS applied materials & interfaces.

[83]  K. Hata,et al.  Lithographically Integrated Microsupercapacitors for Compact, High Performance, and Designable Energy Circuits , 2015 .

[84]  Shuang Li,et al.  Alternating Stacked Graphene‐Conducting Polymer Compact Films with Ultrahigh Areal and Volumetric Capacitances for High‐Energy Micro‐Supercapacitors , 2015, Advanced materials.

[85]  Derrek E. Lobo,et al.  Miniaturized Supercapacitors: Focused Ion Beam Reduced Graphene Oxide Supercapacitors with Enhanced Performance Metrics , 2015 .

[86]  R. Maboudian,et al.  High-Temperature All Solid-State Microsupercapacitors based on SiC Nanowire Electrode and YSZ Electrolyte. , 2015, ACS applied materials & interfaces.

[87]  Y. Jiao,et al.  Enhanced electrochemical performance of hybrid SnO2@MOx (M = Ni, Co, Mn) core–shell nanostructures grown on flexible carbon fibers as the supercapacitor electrode materials , 2015 .

[88]  Tao Cheng,et al.  Flexible supercapacitors based on paper substrates: a new paradigm for low-cost energy storage. , 2015, Chemical Society reviews.

[89]  Jeffrey W. Long,et al.  To Be or Not To Be Pseudocapacitive , 2015 .

[90]  Klaus Müllen,et al.  Ultrathin Printable Graphene Supercapacitors with AC Line‐Filtering Performance , 2015, Advanced materials.

[91]  G. Bidan,et al.  3D hierarchical assembly of ultrathin MnO2 nanoflakes on silicon nanowires for high performance micro-supercapacitors in Li- doped ionic liquid , 2015, Scientific Reports.

[92]  Xu Xu,et al.  Arbitrary Shape Engineerable Spiral Micropseudocapacitors with Ultrahigh Energy and Power Densities , 2015, Advanced materials.

[93]  Costas P. Grigoropoulos,et al.  Facile fabrication of flexible all solid-state micro-supercapacitor by direct laser writing of porous carbon in polyimide , 2015 .

[94]  Wei Chen,et al.  Al/C/MnO2 sandwich nanowalls with highly porous surface for electrochemical energy storage , 2015 .

[95]  Wenwen Liu,et al.  High-performance microsupercapacitors based on two-dimensional graphene/manganese dioxide/silver nanowire ternary hybrid film. , 2015, ACS nano.

[96]  Xiaobin Fan,et al.  Advanced Graphene‐Based Binder‐Free Electrodes for High‐Performance Energy Storage , 2015, Advanced materials.

[97]  Hsisheng Teng,et al.  Laser fabrication of all-solid-state microsupercapacitors with ultrahigh energy and power based on hierarchical pore carbon , 2016 .

[98]  Peihua Huang,et al.  On-chip and freestanding elastic carbon films for micro-supercapacitors , 2016, Science.

[99]  K. Komvopoulos,et al.  High-energy-density, all-solid-state microsupercapacitors with three-dimensional interdigital electrodes of carbon/polymer electrolyte composite , 2016, Nanotechnology.

[100]  Sheng Yang,et al.  Ultraflexible In‐Plane Micro‐Supercapacitors by Direct Printing of Solution‐Processable Electrochemically Exfoliated Graphene , 2016, Advanced materials.

[101]  Yongsung Ji,et al.  High‐Performance Pseudocapacitive Microsupercapacitors from Laser‐Induced Graphene , 2016, Advanced materials.

[102]  G. Bidan,et al.  Solder-reflow resistant solid-state micro-supercapacitors based on ionogels , 2016 .

[103]  W. Mai,et al.  Ultrafast‐Charging Supercapacitors Based on Corn‐Like Titanium Nitride Nanostructures , 2015, Advanced science.

[104]  G. Shi,et al.  An ultrahigh-rate electrochemical capacitor based on solution-processed highly conductive PEDOT:PSS films for AC line-filtering , 2016 .

[105]  V. Presser,et al.  Review: carbon onions for electrochemical energy storage , 2016 .