Updated global SMEFT fit to Higgs, diboson and electroweak data

A bstractThe ATLAS and CMS collaborations have recently released significant new data on Higgs and diboson production in LHC Run 2. Measurements of Higgs properties have improved in many channels, while kinematic information for h → γγ and h → ZZ can now be more accurately incorporated in fits using the STXS method, and W+W− diboson production at high pT gives new sensitivity to deviations from the Standard Model. We have performed an updated global fit to precision electroweak data, W+W− measurements at LEP, and Higgs and diboson data from Runs 1 and 2 of the LHC in the framework of the Standard Model Effective Field Theory (SMEFT), allowing all coefficients to vary the combined dataset, and present the results in both the Warsaw and SILH operator bases. We exhibit the improvement in the constraints on operator coefficients provided by the LHC Run 2 data, and discuss the correlations between them. We also explore the constraints our fit results impose on several models of physics beyond the Standard Model, including models that contribute to the operator coefficients at the tree level and stops in the MSSM that contribute via loops.

[1]  Jason Aebischer,et al.  Matching of gauge invariant dimension 6 operators for b to s and b to c transitions , 2016 .

[2]  A. Manohar An exactly solvable model for dimension-six Higgs operators and h→γγ , 2013, 1305.3927.

[3]  Christophe Grojean,et al.  A global view on the Higgs self-coupling , 2017, 1704.01953.

[4]  Atlas Collaboration Search for the Dimuon Decay of the Higgs Boson in pp Collisions at s =13 TeV with the ATLAS Detector , 2017, 1705.04582.

[5]  G. Passarino,et al.  Low energy behaviour of standard model extensions , 2016, 1603.03660.

[6]  Hayes,et al.  Review of Particle Physics. , 1996, Physical review. D, Particles and fields.

[7]  Takeuchi,et al.  Estimation of oblique electroweak corrections. , 1992, Physical review. D, Particles and fields.

[8]  H. Murayama,et al.  Operator bases, S-matrices, and their partition functions , 2017, 1706.08520.

[9]  Tevong You,et al.  Extending the Universal One-Loop Effective Action: heavy-light coefficients , 2017, Journal of High Energy Physics.

[10]  A. Falkowski,et al.  Future DUNE constraints on EFT , 2018, Journal of High Energy Physics.

[11]  M. Pierini,et al.  The Global Electroweak and Higgs Fits in the LHC era , 2017, 1710.05402.

[12]  Zhenyu Han,et al.  Effective theory analysis of precision electroweak data , 2004, hep-ph/0412166.

[13]  Minho Son,et al.  Combined analysis of double Higgs production via gluon fusion at the HL-LHC in the effective field theory approach , 2018, Physical Review D.

[14]  T. Plehn,et al.  LHC multijet events as a probe for anomalous dimension-six gluon interactions , 2016, 1611.00767.

[15]  D. C. Kennedy,et al.  Electroweak radiative corrections with an effective lagrangian: Four-fermions processes , 1989 .

[16]  野村栄一,et al.  2 , 1900, The Hatak Witches.

[17]  A. Pomarol,et al.  Renormalization of dimension-six operators relevant for the Higgs decays h → γγ, γZ , 2013, 1302.5661.

[18]  Jason Aebischer,et al.  Matching of gauge invariant dimension-six operators for b → s and b → c transitions , 2015, 1512.02830.

[19]  Adam Martin,et al.  Low-derivative operators of the Standard Model effective field theory via Hilbert series methods , 2015, 1510.00372.

[20]  A. Falkowski Effective field theory approach to LHC Higgs data , 2015, 1505.00046.

[21]  H. Schulz,et al.  Higgs coupling measurements at the LHC , 2015, 1511.05170.

[22]  T. Dorigo Hadron Collider Searches for Diboson Resonances , 2018, 1802.00354.

[23]  Christophe Delaere,et al.  Measurement of W-pair production in e(+)e(-) collisions at centre-of-mass energies from 183 to 209 GeV , 2004 .

[24]  R. T. Roberts,et al.  Evidence for the associated production of the Higgs boson and a top quark pair with the ATLAS detector , 2017, 1712.08891.

[25]  B. Trocmé,et al.  Measurement of W-pair production in e + e − collisions at centre-of-mass energies from 183 to 209 GeV , 2017 .

[26]  Z. Kunszt,et al.  One-loop effective lagrangians after matching , 2016, 1602.00126.

[27]  Chanyong Park,et al.  Spiky Strings on AdS$_4 \times {\bf CP}^3$ , 2008 .

[28]  Michael Trott,et al.  Renormalization group evolution of the Standard Model dimension six operators II: Yukawa dependence , 2013, Journal of High Energy Physics.

[29]  M. Mühlleitner,et al.  The measurement of the Higgs self-coupling at the LHC: theoretical status , 2012, 1212.5581.

[30]  H. Murayama,et al.  What do precision Higgs measurements buy us , 2014, 1404.1058.

[31]  Measurements of the Higgs boson production cross section via Vector Boson Fusion and associated WH production in the WW ∗ → ` ν ` ν decay mode with the ATLAS detector at √ s = 13 TeV , 2016 .

[32]  S. Dawson,et al.  Standard Model EFT and Extended Scalar Sectors , 2017, 1704.07851.

[33]  Cms Collaborations Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC $pp$ collision data at $\sqrt{s}=$ 7 and 8 TeV , 2016 .

[34]  John Ellis,et al.  The universal one-loop effective action , 2015, 1512.03003.

[35]  S. Y. Shim,et al.  Handbook of LHC Higgs cross sections: 4. Deciphering the nature of the Higgs sector , 2016 .

[36]  Michael Trott,et al.  The SMEFTsim package, theory and tools , 2017, 1709.06492.

[37]  V. Sanz,et al.  Limits on anomalous couplings of the Higgs boson to electroweak gauge bosons from LEP and the LHC , 2012, 1211.1320.

[38]  J. Santiago,et al.  Effective description of general extensions of the Standard Model: the complete tree-level dictionary , 2017, 1711.10391.

[39]  G. P. Yeh,et al.  Combination of CDF and D0 W-Boson mass measurements , 2013, 1307.7627.

[40]  On gauge invariance and minimal coupling , 2013, 1305.0017.

[41]  M. Trott,et al.  Higgs Decay to Two Photons at One Loop in the Standard Model Effective Field Theory. , 2015, Physical review letters.

[42]  O. Eberhardt,et al.  Update of global Two-Higgs-Doublet model fits , 2017, 1711.02095.

[43]  A. Falkowski,et al.  Compilation of low-energy constraints on 4-fermion operators in the SMEFT , 2017, 1706.03783.

[44]  I. Brivio Scheming in the SMEFT , 2017, 1710.01003.

[45]  J. Haller,et al.  Update of the global electroweak fit and constraints on two-Higgs-doublet models , 2018, The European Physical Journal C.

[46]  V. M. Ghete,et al.  Inclusive Search for a Highly Boosted Higgs Boson Decaying to a Bottom Quark-Antiquark Pair. , 2018, Physical review letters.

[47]  Francesco Riva,et al.  Model-independent precision constraints on dimension-6 operators , 2014, 1411.0669.

[48]  M. Pierini,et al.  Electroweak precision constraints at present and future colliders , 2016, 1611.05354.

[49]  Michael Trott,et al.  Renormalization group evolution of the Standard Model dimension six operators III: gauge coupling dependence and phenomenology , 2013, Journal of High Energy Physics.

[50]  H. Murayama,et al.  Hilbert series and operator bases with derivatives in effective field theories , 2015, 1507.07240.

[51]  Bruce Yabsley,et al.  Search for the standard model Higgs boson produced in association with top quarks and decaying into a bb¯ pair in pp collisions at √s=13 TeV with the ATLAS detector , 2018 .

[52]  P. Stoffer,et al.  Low-energy effective field theory below the electroweak scale: operators and matching , 2017, Journal of High Energy Physics.

[53]  Minho Son,et al.  Anomalous triple gauge couplings in the effective field theory approach at the LHC , 2016, 1609.06312.

[54]  Rodrigo Alonso,et al.  Renormalization group evolution of dimension-six baryon number violating operators , 2014, 1405.0486.

[55]  G. Altarelli,et al.  Vacuum polarization effects of new physics on electroweak processes , 1991 .

[56]  The Aleph Collaboration,et al.  Precision electroweak measurements on the Z resonance , 2005, hep-ex/0509008.

[57]  C. Murphy Statistical approach to Higgs boson couplings in the standard model effective field theory , 2017, 1710.02008.

[58]  V. M. Ghete,et al.  Evidence for the Higgs boson decay to a bottom quark–antiquark pair , 2018 .

[59]  Christophe Grojean,et al.  On the validity of the effective field theory approach to SM precision tests , 2016, Journal of High Energy Physics.

[60]  Dana Z. Anderson,et al.  Search for ttH production in the H→bb decay channel with leptonic tt decays in proton-proton collisions at √s = 13 TeV , 2019 .

[61]  T. Corbett,et al.  Determining triple gauge boson couplings from Higgs data. , 2013, Physical review letters.

[62]  J. Romão,et al.  Higgs EFT for 2HDM and beyond , 2016, The European physical journal. C, Particles and fields.

[63]  J. Terning,et al.  Large corrections to electroweak parameters in technicolor theories , 1990 .

[64]  A. Falkowski,et al.  Model independent constraints on four-lepton operators , 2015, 1511.07434.

[65]  Atlas Publications Measurements of the Higgs boson production and decay rates and coupling strengths using pp collision data at √ s = 7 and 8 TeV in the ATLAS experiment , 2015 .

[66]  J. Brehmer,et al.  Better Higgs-CP Tests Through Information Geometry , 2017, 1712.02350.

[67]  C. Hays,et al.  Constraining EFT parameters using simplified template cross sections , 2017 .

[68]  Hitoshi Murayama,et al.  One-loop matching and running with covariant derivative expansion , 2016, 1604.01019.

[69]  Veronica Sanz,et al.  The effective Standard Model after LHC Run I , 2014, 1410.7703.

[70]  D. Wyler,et al.  Effective lagrangian analysis of new interactions and flavour conservation , 1986 .

[71]  I. Brivio,et al.  The standard model as an effective field theory , 2017, Physics Reports.

[72]  H. Murayama,et al.  How to use the Standard Model effective field theory , 2014, 1412.1837.

[73]  L. Randall,et al.  Radiative corrections to electroweak parameters in technicolor theories , 1991 .

[74]  E. Massó An effective guide to beyond the Standard Model physics , 2014, 1406.6376.

[75]  Zhen Liu,et al.  A global view on the Higgs self-coupling at lepton colliders , 2017, Journal of High Energy Physics.

[76]  A. Randle-conde,et al.  Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at √s = 7 and 8 TeV , 2016 .

[77]  Francesco Riva,et al.  Towards the ultimate SM fit to close in on Higgs physics , 2013, 1308.2803.

[78]  O. Eberhardt,et al.  Next-to-leading order unitarity fits in Two-Higgs-Doublet models with soft ℤ2 breaking , 2016, 1609.01290.

[79]  Peter Stoffer,et al.  Low-energy effective field theory below the electroweak scale: anomalous dimensions , 2017, Journal of High Energy Physics.

[80]  M. Trott,et al.  The Z decay width in the SMEFT: yt and λ corrections at one loop , 2016, 1611.09879.

[81]  M. Misiak,et al.  Dimension-six terms in the Standard Model Lagrangian , 2010, 1008.4884.

[82]  Nils Lavesson,et al.  Extending CKKW-merging to One-Loop Matrix Elements , 2008, 0811.2912.

[83]  V. M. Ghete,et al.  Measurements of properties of the Higgs boson decaying into the four-lepton final state in pp collisions at s=13$$ \sqrt{s}=13 $$ TeV , 2017, 1706.09936.

[84]  Michael Trott,et al.  Renormalization group scaling of Higgs operators and h → γγ decay , 2013, 1301.2588.

[85]  O. Eberhardt,et al.  Current and future constraints on Higgs couplings in the nonlinear Effective Theory , 2018, Journal of High Energy Physics.

[86]  A. Pomarol,et al.  Higgs windows to new physics through d = 6 operators: constraints and one-loop anomalous dimensions , 2013, 1308.1879.

[87]  Nicola De Filippis,et al.  Electroweak measurements in electron positron collisions at W-boson-pair energies at LEP , 2013 .

[88]  J. Ellis,et al.  Complete Higgs sector constraints on dimension-6 operators , 2014, 1404.3667.

[89]  J. Gunion,et al.  Scrutinizing the alignment limit in two-Higgs-doublet models: m h = 125 GeV , 2015, 1507.00933.

[90]  Tilman Plehn,et al.  The gauge-Higgs legacy of the LHC Run I , 2016 .

[91]  C. Grojean,et al.  The Strongly-Interacting Light Higgs , 2007, hep-ph/0703164.

[92]  Landon Lehman,et al.  Extending the Standard Model Effective Field Theory with the Complete Set of Dimension-7 Operators , 2014, 1410.4193.

[93]  J. Rademacker,et al.  Review of Multibody Charm Analyses , 2016 .

[94]  B. Fuks,et al.  Phenomenology of the Higgs effective Lagrangian via FeynRules , 2013, 1310.5150.

[95]  T. Corbett,et al.  Robust Determination of the Higgs Couplings: Power to the Data , 2012, 1211.4580.

[96]  M. Bjørn,et al.  Incorporating doubly resonant W± data in a global fit of SMEFT parameters to lift flat directions , 2016, 1606.06693.

[97]  B. Grinstein,et al.  Operator analysis for precision electroweak physics , 1991 .

[98]  T. Plehn,et al.  The Higgs legacy of the LHC Run I , 2015, 1505.05516.

[99]  Zhengkang Zhang,et al.  Covariant diagrams for one-loop matching , 2016, 1610.00710.

[100]  S. Fichet,et al.  A Bayesian view of the Higgs sector with higher dimensional operators , 2013, 1304.3369.

[101]  Adam Martin,et al.  Hilbert Series for Constructing Lagrangians: expanding the phenomenologist's toolbox , 2015, 1503.07537.

[102]  Kentarou Mawatari,et al.  Rosetta: an operator basis translator for standard model effective field theory , 2015, The European Physical Journal C.

[103]  S. Dawson,et al.  Higgs decays to $ZZ$ and $Z\gamma$ in the standard model effective field theory: An NLO analysis , 2018 .

[104]  G. Passarino,et al.  The Standard Model Effective Field Theory and Next to Leading Order , 2016, 1610.08356.

[105]  A. Pomarol,et al.  BSM Primary effects , 2014, DIS 2014.

[106]  S. Willenbrock,et al.  Effective Field Theory Beyond the Standard Model , 2014, 1401.0470.

[107]  A. Falkowski,et al.  Global Constraints on Anomalous Triple Gauge Couplings in the Effective Field Theory Approach. , 2015, Physical review letters.

[108]  M. Hauschild,et al.  Measurement of the e+e-→W+W- cross section and W decay branching fractions at LEP , 2007, 0708.1311.

[109]  J. Fuentes-Martín,et al.  Integrating out heavy particles with functional methods: a simplified framework , 2016, 1607.02142.

[110]  M. Trott,et al.  Towards consistent Electroweak Precision Data constraints in the SMEFT , 2015, Journal of High Energy Physics.

[111]  V. M. Ghete,et al.  Search for excited leptons in ℓℓγ final states in proton-proton collisions at s=13$$ \sqrt{\mathrm{s}}=13 $$ TeV , 2018 .

[112]  J. Wudka,et al.  Patterns of deviation from the standard model , 1994, hep-ph/9405214.

[113]  Liam Moore,et al.  Constraining top quark effective theory in the LHC Run II era , 2015, 1512.03360.

[114]  Christophe Grojean,et al.  Effective Lagrangian for a light Higgs-like scalar , 2013, 1303.3876.

[115]  S. Dawson,et al.  Higgs decays to ZZ and Zγ in the standard model effective field theory: An NLO analysis [Higgs decays to ZZ and Zγ in the SMEFT: An NLO analysis] , 2018 .

[116]  A. Falkowski,et al.  Electroweak constraints on flavorful effective theories , 2015, 1503.07872.

[117]  Jason Aebischer,et al.  B physics beyond the Standard Model at one loop: complete renormalization group evolution below the electroweak scale , 2017, Journal of High Energy Physics.

[118]  T. Plehn,et al.  Interpreting top-quark LHC measurements in the standard-model effective field theory : arXiv , 2018, 1802.07237.

[119]  I. Brivio,et al.  Scheming in the SMEFT. . . and a reparameterization invariance! , 2017, 1701.06424.

[120]  Steven Weinberg,et al.  Baryon and Lepton Nonconserving Processes , 1979 .

[121]  M. Trott,et al.  Consistent constraints on the Standard Model Effective Field Theory , 2015, 1508.05060.

[122]  Hitoshi Murayama,et al.  2, 84, 30, 993, 560, 15456, 11962, 261485, . . .: higher dimension operators in the SM EFT , 2015, Journal of High Energy Physics.

[123]  V. M. Ghete,et al.  Measurements of properties of the Higgs boson decaying to a W boson pair in pp collisions at $\sqrt{s} = $ 13 TeV , 2018 .

[124]  Michael Trott,et al.  Renormalization group evolution of the standard model dimension six operators. I: formalism and λ dependence , 2013, Journal of High Energy Physics.

[125]  S. Dawson,et al.  NLO QCD effective field theory analysis of W+ W- production at the LHC including fermionic operators , 2017, 1708.03332.

[126]  Scoap DsixTools: the standard model effective field theory toolkit , 2017 .

[127]  R. Contino,et al.  Effective field theory analysis of double Higgs boson production via gluon fusion , 2015 .

[128]  J. Ellis,et al.  Comparing EFT and exact one-loop analyses of non-degenerate stops , 2015, 1504.02409.

[129]  J. Ferrando,et al.  Results from TopFitter , 2016, Proceedings of 9th International Workshop on the CKM Unitarity Triangle — PoS(CKM2016).

[130]  Tevong You,et al.  Mixed heavy–light matching in the Universal One-Loop Effective Action , 2016, 1604.02445.

[131]  T. Corbett,et al.  Exploring extended scalar sectors with di-Higgs signals: a Higgs EFT perspective , 2017, 1705.02551.

[132]  Alexandre Alves,et al.  Can we discover double Higgs production at the LHC , 2017, 1704.07395.

[133]  R. Brenner,et al.  Measurement of the W⁺W⁻ production cross section in pp collisions at a centre-of-mass energy of √s = 13 TeV with the ATLAS experiment , 2017 .

[134]  V. M. Ghete,et al.  Observation of the Higgs boson decay to a pair of τ leptons with the CMS detector , 2018 .

[135]  Zhengkang Zhang Time to Go Beyond Triple-Gauge-Boson-Coupling Interpretation of W Pair Production. , 2016, Physical review letters.

[136]  Yun Jiang,et al.  WCxf: An exchange format for Wilson coefficients beyond the Standard Model , 2017, Comput. Phys. Commun..