Pricing Currency Derivatives Under the Benchmark Approach

This paper considers the realistic modelling of derivative contracts on exchange rates. We propose a stochastic volatility model that recovers not only the typically observed implied volatility smiles and skews for short dated vanilla foreign exchange options but allows one also to price payoffs in foreign currencies, lower than possible under classical risk neutral pricing, in particular, for long dated derivatives. The main reason for this important feature is the strict supermartingale property of benchmarked savings accounts under the real world probability measure, which the calibrated parameters identify under the proposed model. Using a real dataset on vanilla option quotes, we calibrate our model on a triangle of currencies and find that the risk neutral approach fails for the calibrated model, while the benchmark approach still works.

[1]  Eckhard Platen,et al.  Pricing and hedging of long dated variance swaps under a 3/2 volatility model , 2010, J. Comput. Appl. Math..

[2]  E. Platen,et al.  The Affine Nature of Aggregate Wealth Dynamics , 2012 .

[3]  P. Protter A Mathematical Theory of Financial Bubbles , 2012 .

[4]  Alessandro Gnoatto,et al.  Smiles All Around: FX Joint Calibration in a Multi-Heston Model , 2012, 1201.1782.

[5]  Erhan Bayraktar,et al.  Valuation Equations for Stochastic Volatility Models , 2010, SIAM J. Financial Math..

[6]  Iain J. Clark Foreign Exchange Option Pricing: A Practitioner's Guide , 2011 .

[7]  Martino Grasselli,et al.  Riding on the smiles , 2010 .

[8]  E. Platen,et al.  Approximating the numéraire portfolio by naive diversification , 2010 .

[9]  P. Carr,et al.  Pricing swaps and options on quadratic variation under stochastic time change models—discrete observations case , 2010 .

[10]  P. Protter,et al.  Foreign currency bubbles , 2010 .

[11]  H. Hulley The Economic Plausibility of Strict Local Martingales in Financial Modelling , 2010 .

[12]  Antonio Castagna FX Options and Smile Risk , 2010 .

[13]  Gabriel G. Drimus Options on realized variance by transform methods: a non-affine stochastic volatility model , 2009 .

[14]  A. Mijatović,et al.  On the martingale property of certain local martingales , 2009, 0905.3701.

[15]  F. Abergel,et al.  The Times Change: Multivariate Subordination, Empirical Facts , 2009 .

[16]  P. Protter,et al.  ASSET PRICE BUBBLES IN INCOMPLETE MARKETS * , 2008 .

[17]  Xiongzhi Chen Brownian Motion and Stochastic Calculus , 2008 .

[18]  Constantinos Kardaras,et al.  The numéraire portfolio in semimartingale financial models , 2007, Finance Stochastics.

[19]  P. Carr,et al.  A new approach for option pricing under stochastic volatility , 2007 .

[20]  M. Loewenstein,et al.  Options and Bubbles , 2007 .

[21]  Uwe Wystup,et al.  FX Options and Structured Products , 2007 .

[22]  Kasper Larsen,et al.  No Arbitrage and the Growth Optimal Portfolio , 2007 .

[23]  Leif Andersen,et al.  Moment Explosions in Stochastic Volatility Models Moment Explosions in the Black–scholes and Exponential Lévy Model Moment Explosions in the Heston Model , 2022 .

[24]  C. Tebaldi,et al.  Option pricing with Correlation Risk , 2007 .

[25]  Gurdip Bakshi,et al.  Stochastic Risk Premiums, Stochastic Skewness in Currency Options, and Stochastic Discount Factors in International Economies , 2006 .

[26]  D. Heath,et al.  A Benchmark Approach to Quantitative Finance , 2006 .

[27]  Claudio Tebaldi,et al.  Option pricing when correlations are stochastic: an analytical framework , 2006 .

[28]  Currency Derivatives under a Minimal Market Model with Random Scaling , 2005 .

[29]  Gurdip Bakshi,et al.  Estimation of Continuous-Time Models with an Application to Equity Volatility Dynamics , 2005 .

[30]  R. Beneder Foreign Exchange options and the Volatility Smile1 , 2003 .

[31]  D. Duffie,et al.  Affine Processes and Application in Finance , 2002 .

[32]  A minimal financial market model , 2001 .

[33]  Gregory A. Willard,et al.  Local martingales, arbitrage, and viability Free snacks and cheap thrills , 2000 .

[34]  Alan L. Lewis Option Valuation under Stochastic Volatility , 2000 .

[35]  D. Ahn,et al.  A Parametric Nonlinear Model of Term Structure Dynamics , 1999 .

[36]  S. Heston,et al.  A Simple New Formula for Options With Stochastic Volatility , 1997 .

[37]  Marco Ferrante,et al.  Finite dimensional filters for a discrete-time nonlinear system with generalized gaussian white noise. , 1995 .

[38]  Walter Schachermayer,et al.  The no-arbitrage property under a change of numéraire , 1995 .

[39]  C. Alexander,et al.  School of Social Sciences , 2012 .

[40]  S. Heston A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .

[41]  Gary James Jason,et al.  The Logic of Scientific Discovery , 1988 .

[42]  W. Feller TWO SINGULAR DIFFUSION PROBLEMS , 1951 .