Global Ill‐Posedness of the Isentropic System of Gas Dynamics

We consider the isentropic compressible Euler system in 2 space dimensions with pressure law p () = (2) and we show the existence of classical Riemann data, i.e. pure jump discontinuities across a line, for which there are infinitely many admissible bounded weak solutions (bounded away from the void). We also show that some of these Riemann data are generated by a 1-dimensional compression wave: our theorem leads therefore to Lipschitz initial data for which there are infinitely many global bounded admissible weak solutions. (c) 2015 Wiley Periodicals, Inc.

[1]  Camillo De Lellis,et al.  The Euler equations as a differential inclusion , 2007 .

[2]  D. Serre Systems of conservation laws , 1999 .

[3]  A. Shnirelman On the nonuniqueness of weak solution of the Euler equation , 1997 .

[4]  Camillo De Lellis Continuous dissipative Euler flows and a conjecture of Onsager , 2012 .

[5]  Philip Isett Hölder Continuous Euler Flows in Three Dimensions with Compact Support in Time , 2012, 1211.4065.

[6]  Camillo De Lellis,et al.  On Admissibility Criteria for Weak Solutions of the Euler Equations , 2007, 0712.3288.

[7]  Camillo De Lellis,et al.  Dissipative Euler Flows and Onsager's Conjecture , 2012, 1205.3626.

[8]  Elisabetta Chiodaroli,et al.  A counterexample to well-posedness of entropy solutions to the compressible Euler system , 2012, 1201.3470.

[9]  A. Bressan Hyperbolic systems of conservation laws : the one-dimensional Cauchy problem , 2000 .

[10]  S. Daneri Cauchy Problem for Dissipative Hölder Solutions to the Incompressible Euler Equations , 2013, 1302.0988.

[11]  Aniel,et al.  Lack of uniqueness for weak solutions of the incompressible porous media equation , 2010 .

[12]  Gui-Qiang G. Chen,et al.  Uniqueness and asymptotic stability of Riemann solutions for the compressible Euler equations , 2000 .

[13]  Camillo De Lellis,et al.  Chapter 4 – Notes on Hyperbolic Systems of Conservation Laws and Transport Equations , 2007 .

[14]  Hermano Frid,et al.  Extended Divergence-Measure Fields and the Euler Equations for Gas Dynamics , 2003 .

[15]  Vladimir Scheffer,et al.  An inviscid flow with compact support in space-time , 1993 .

[16]  L. Sz'ekelyhidi Relaxation of the incompressible porous media equation , 2011, 1102.2597.

[17]  I. N. Sneddon,et al.  Systems of Conservation Laws 1: Hyperbolicity, Entropies, Shock Waves , 1999 .

[18]  Barbara Lee Keyfitz,et al.  Existence and uniqueness of entropy solutions to the Riemann problem for hyperbolic systems of two nonlinear conservation laws , 1978 .

[19]  R. J. Diperna Uniqueness of Solutions to Hyperbolic Conservation Laws. , 1978 .

[20]  L. Székelyhidi Weak solutions to the incompressible Euler equations with vortex sheet initial data , 2011 .

[21]  Mathematisches Forschungsinstitut Oberwolfach,et al.  Hyperbolic Conservation Laws , 2004 .

[22]  Camillo De Lellis,et al.  Transporting microstructure and dissipative Euler flows , 2013, 1302.2815.

[23]  R. Shvydkoy Convex integration for a class of active scalar equations , 2010, 1010.4755.

[24]  Camillo De Lellis,et al.  The $h$-principle and the equations of fluid dynamics , 2011, 1111.2700.

[25]  Camillo De Lellis,et al.  Dissipative continuous Euler flows , 2012, 1202.1751.