Colliders as a simultaneous probe of supersymmetric dark matter and Terascale cosmology

Terascale supersymmetry has the potential to provide a natural explanation of the dominant dark matter component of the standard {Lambda}CDM cosmology. However once we impose the constraints on minimal supersymmetry parameters from current particle physics data, a satisfactory dark matter abundance is no longer prima facie natural. This Neutralino Tuning Problem could be a hint of nonstandard cosmology during and/or after the Terascale era. To quantify this possibility, we introduce an alternative cosmological benchmark based upon a simple model of quintessential inflation. This benchmark has no free parameters, so for a given supersymmetry model it allows an unambiguous prediction of the dark matter relic density. As a example, we scan over the parameter space of the CMSSM, comparing the neutralino relic density predictions with the bounds from WMAP. We find that the WMAP-allowed regions of the CMSSM are an order of magnitude larger if we use the alternative cosmological benchmark, as opposed to {Lambda}CDM. Initial results from the CERN Large Hadron Collider will distinguish between the two allowed regions.

[1]  A. Pukhov,et al.  micrOMEGAs 2.0.7: a program to calculate the relic density of dark matter in a generic model , 2006, Comput. Phys. Commun..

[2]  E. Nezri,et al.  Dark matter and collider searches in the MSSM , 2005, hep-ph/0507263.

[3]  G. Moultaka,et al.  SuSpect: A Fortran code for the Supersymmetric and Higgs particle spectrum in the MSSM , 2002, Comput. Phys. Commun..

[4]  J. Lykken,et al.  Minimal noncanonical cosmologies , 2006, astro-ph/0604528.

[5]  M. Kakizaki,et al.  Abundance of Cosmological Relics in Low‐Temperature Scenarios , 2006, hep-ph/0603165.

[6]  Edward J. Wollack,et al.  Wilkinson Microwave Anisotropy Probe (WMAP) Three Year Results: Implications for Cosmology , 2006, astro-ph/0603449.

[7]  E Brubaker,et al.  Combination of CDF and D0 Results on the Mass of the Top Quark , 2006 .

[8]  M. Battaglia,et al.  Determination of Dark Matter Properties at High-Energy Colliders , 2006, hep-ph/0602187.

[9]  B. Allanach Naturalness priors and fits to the constrained minimal supersymmetric Standard Model , 2006, hep-ph/0601089.

[10]  Antonio Delgado,et al.  The Well-Tempered Neutralino , 2006, hep-ph/0601041.

[11]  C. Pallis Kination-dominated reheating and cold dark matter abundance , 2005, hep-ph/0510234.

[12]  C. Lester,et al.  Multidimensional mSUGRA likelihood maps , 2005, hep-ph/0507283.

[13]  A. Pukhov,et al.  micrOMEGAs: Version 1.3 , 2004, Comput. Phys. Commun..

[14]  J. Lykken,et al.  Slinky Inflation , 2005, astro-ph/0504090.

[15]  Alexander Belyaev,et al.  Direct, indirect and collider detection of neutralino dark matter in SUSY models with non-universal Higgs masses , 2005, hep-ph/0504001.

[16]  C. Pallis Quintessential kination and cold dark matter abundance , 2005, hep-ph/0503080.

[17]  J. Yokoyama,et al.  Neutralino Dark Matter from Heavy Gravitino Decay , 2005, hep-ph/0502211.

[18]  N. Okada,et al.  Neutralino dark matter in brane world cosmology , 2004, hep-ph/0409219.

[19]  J. Lykken,et al.  The Soft supersymmetry breaking Lagrangian: Theory and applications , 2003, hep-ph/0312378.

[20]  J. P. Castle,et al.  First results from the Cryogenic Dark Matter Search in the Soudan Underground Laboratory. , 2004, Physical review letters.

[21]  B. Allanach,et al.  Requirements on collider data to match the precision of WMAP on supersymmetric dark matter. , 2004, hep-ph/0410091.

[22]  J. Ellis,et al.  Prospects for sparticle discovery in variants of the MSSM , 2004, hep-ph/0408118.

[23]  P. Ullio,et al.  DarkSUSY: Computing Supersymmetric Dark Matter Properties Numerically , 2004, astro-ph/0406204.

[24]  A. Belyaev,et al.  Indirect, direct and collider detection of neutralino dark matter in the minimal supergravity model , 2004, hep-ph/0405210.

[25]  John Ellis,et al.  Likelihood analysis of the constrained minimal supersymmetric standard model parameter space , 2004 .

[26]  M. Gaillard,et al.  Little Supersymmetry and the Supersymmetric Little Hierarchy Problem , 2004, hep-ph/0404197.

[27]  Mario E. Gómez,et al.  Sensitivity of supersymmetric dark matter to the b quark mass , 2004, hep-ph/0404025.

[28]  D. Whiteson,et al.  Combination of CDF and D0 results on the top-quark mass , 2005 .

[29]  A. Belyaev,et al.  Linear collider capabilities for supersymmetry in dark matter allowed region , 2003, hep-ph/0311351.

[30]  F. Gianotti,et al.  Updated post-WMAP benchmarks for supersymmetry , 2003, hep-ph/0306219.

[31]  Jonathan L. Feng Supersymmetry and cosmology , 2004, hep-ph/0405215.

[32]  R. Arnowitt,et al.  Dark Matter, Muon g-2 and Other SUSY Constraints , 2003, hep-ph/0310103.

[33]  U. Chattopadhyay,et al.  WMAP constraints, supersymmetric dark matter, and implications for the direct detection of supersymmetry , 2003, hep-ph/0303201.

[34]  H. Baer,et al.  Chi**2 analysis of the minimal supergravity model including WMAP, g(mu)-2 and b -> s gamma constraints , 2003, hep-ph/0303114.

[35]  J. Ellis,et al.  Supersymmetric dark matter in light of WMAP , 2003, hep-ph/0303043.

[36]  A. Djouadi,et al.  Updated Constraints on the Minimal Supergravity Model , 2002, hep-ph/0602001.

[37]  H. Kajiura Kronecker foliation, D1 branes and Morita equivalence of noncommutative two tori , 2002, hep-th/0207097.

[38]  A. Belyaev,et al.  Updated Constraints on the Minimal Supergravity Model , 2002, hep-ph/0210441.

[39]  E. Kolb,et al.  Largest temperature of the radiation era and its cosmological implications , 2000, hep-ph/0005123.

[40]  A. Strumia,et al.  The `LEP paradox' , 2000, hep-ph/0007265.

[41]  P. Gondolo,et al.  Neutralino relic density including coannihilations , 1997, hep-ph/9711461.

[42]  Graciela B. Gelmini,et al.  Neutralino dark matter searches , 1991 .

[43]  R. Arnowitt,et al.  Gauge hierarchy in supergravity GUTS , 1983 .

[44]  J. Lykken,et al.  Supergravity as the messenger of supersymmetry breaking , 1983 .

[45]  S. Ferrara,et al.  Gauge models with spontaneously broken local supersymmetry , 1982 .