Theoretical characterization of excitation energy transfer in chlorosome light-harvesting antennae from green sulfur bacteria

[1]  J. Linnanto,et al.  Exciton description of chlorosome to baseplate excitation energy transfer in filamentous anoxygenic phototrophs and green sulfur bacteria. , 2013, The journal of physical chemistry. B.

[2]  Alán Aspuru-Guzik,et al.  Temperature and carbon assimilation regulate the chlorosome biogenesis in green sulfur bacteria. , 2013, Biophysical journal.

[3]  Robert Eugene Blankenship,et al.  Chlorosome antenna complexes from green photosynthetic bacteria , 2013, Photosynthesis Research.

[4]  S. Habuchi,et al.  Circular Dichroism Measured on Single Chlorosomal Light-Harvesting Complexes of Green Photosynthetic Bacteria. , 2012, The journal of physical chemistry letters.

[5]  M. Bawendi,et al.  Utilizing redox-chemistry to elucidate the nature of exciton transitions in supramolecular dye nanotubes. , 2012, Nature chemistry.

[6]  A. Aspuru‐Guzik,et al.  On the alternatives for bath correlators and spectral densities from mixed quantum-classical simulations. , 2012, The Journal of chemical physics.

[7]  Jakub Dostál,et al.  Two-dimensional electronic spectroscopy reveals ultrafast energy diffusion in chlorosomes. , 2012, Journal of the American Chemical Society.

[8]  Alán Aspuru-Guzik,et al.  Memory-Assisted Exciton Diffusion in the Chlorosome Light-Harvesting Antenna of Green Sulfur Bacteria. , 2012, The journal of physical chemistry letters.

[9]  K. Schulten,et al.  Juxtaposing density matrix and classical path-based wave packet dynamics. , 2012, The Journal of chemical physics.

[10]  F. Buda,et al.  Structural variability in wild-type and bchQ bchR mutant chlorosomes of the green sulfur bacterium Chlorobaculum tepidum. , 2012, Biochemistry.

[11]  J. Linnanto,et al.  Excitation Energy Transfer in Isolated Chlorosomes from Chlorobaculum tepidum and Prosthecochloris aestuarii , 2012, Photochemistry and photobiology.

[12]  John A. Parkhill,et al.  Exciton coherence lifetimes from electronic structure. , 2011, The Journal of chemical physics.

[13]  Timothy C. Berkelbach,et al.  Reduced density matrix hybrid approach: application to electronic energy transfer. , 2011, The Journal of chemical physics.

[14]  R. Camacho,et al.  Organization of bacteriochlorophylls in individual chlorosomes from Chlorobaculum tepidum studied by 2-dimensional polarization fluorescence microscopy. , 2011, Journal of the American Chemical Society.

[15]  K. Schulten,et al.  From atomistic modeling to excitation transfer and two-dimensional spectra of the FMO light-harvesting complex. , 2011, The journal of physical chemistry. B.

[16]  K. Schulten,et al.  Theory and Simulation of the Environmental Effects on FMO Electronic Transitions. , 2011, The journal of physical chemistry letters.

[17]  A. Olaya-Castro,et al.  Electronic excitation dynamics in multichromophoric systems described via a polaron-representation master equation. , 2011, The Journal of chemical physics.

[18]  R. Silbey,et al.  Excitation energy transfer in a non-markovian dynamical disordered environment: localization, narrowing, and transfer efficiency. , 2011, The journal of physical chemistry. B.

[19]  S. Habuchi,et al.  Absorption linear dichroism measured directly on a single light-harvesting system: the role of disorder in chlorosomes of green photosynthetic bacteria. , 2011, Journal of the American Chemical Society.

[20]  Robert Eugene Blankenship,et al.  Evolution of photosynthesis. , 2011, Annual review of plant biology.

[21]  P. Rebentrost,et al.  Atomistic study of the long-lived quantum coherences in the Fenna-Matthews-Olson complex. , 2011, Biophysical journal.

[22]  G. Fleming,et al.  On the interpretation of quantum coherent beats observed in two-dimensional electronic spectra of photosynthetic light harvesting complexes. , 2011, The journal of physical chemistry. B.

[23]  J. Song,et al.  How does the nonlocal HF exchange influence the electron excitation of Bacteriochlorophyll and its assembly , 2011 .

[24]  Jessica E. Donehue,et al.  Probing coherence in synthetic cyclic light-harvesting pigments. , 2011, Journal of the American Chemical Society.

[25]  V. May,et al.  Charge and Energy Transfer Dynamics in Molecular Systems: MAY:CHARGE TRANSFER 3ED O-BK , 2011 .

[26]  Robert Eugene Blankenship,et al.  Singlet and triplet excited state properties of natural chlorophylls and bacteriochlorophylls , 2010, Photosynthesis Research.

[27]  T. Miyatake,et al.  Self-aggregates of natural chlorophylls and their synthetic analogues in aqueous media for making light-harvesting systems , 2010 .

[28]  U. Kleinekathöfer,et al.  Time-dependent atomistic view on the electronic relaxation in light-harvesting system II. , 2010, The journal of physical chemistry. B.

[29]  G. Fleming,et al.  Quantum coherence and its interplay with protein environments in photosynthetic electronic energy transfer. , 2010, Physical chemistry chemical physics : PCCP.

[30]  G. Oostergetel,et al.  The chlorosome: a prototype for efficient light harvesting in photosynthesis , 2010, Photosynthesis Research.

[31]  N. Nielsen,et al.  A model of the protein–pigment baseplate complex in chlorosomes of photosynthetic green bacteria , 2010, Photosynthesis Research.

[32]  J. Linnanto,et al.  Excitation energy transfer in isolated chlorosomes from Chloroflexus aurantiacus , 2009 .

[33]  Donald A. Bryant,et al.  Alternating syn-anti bacteriochlorophylls form concentric helical nanotubes in chlorosomes , 2009, Proceedings of the National Academy of Sciences.

[34]  K. B. Whaley,et al.  Quantum entanglement in photosynthetic light-harvesting complexes , 2009, 0905.3787.

[35]  G. Scholes,et al.  Electronic and vibrational coherences in resonance energy transfer along MEH-PPV chains at room temperature. , 2009, The journal of physical chemistry. A.

[36]  Arvi Freiberg,et al.  Excitonic polarons in quasi-one-dimensional LH1 and LH2 bacteriochlorophyll a antenna aggregates from photosynthetic bacteria : A wavelength-dependent selective spectroscopy study , 2009 .

[37]  Kaori Fukuzawa,et al.  Application of the fragment molecular orbital method for determination of atomic charges on polypeptides. II. Towards an improvement of force fields used for classical molecular dynamics simulations , 2009 .

[38]  Kanako Kaihara,et al.  Spectroscopic properties and bacteriochlorophyll c isomer composition of extramembranous light-harvesting complexes in the green sulfur photosynthetic bacterium Chlorobium tepidum and its CT0388-deleted mutant under vitamin B_12-limited conditions , 2008, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[39]  J. Linnanto,et al.  Investigation on chlorosomal antenna geometries: tube, lamella and spiral-type self-aggregates , 2008, Photosynthesis Research.

[40]  F. Würthner,et al.  Self-assembled zinc chlorin rod antennae powered by peripheral light-harvesting chromophores. , 2008, Journal of the American Chemical Society.

[41]  M. Head‐Gordon,et al.  Systematic optimization of long-range corrected hybrid density functionals. , 2008, The Journal of chemical physics.

[42]  Kaori Fukuzawa,et al.  Application of the fragment molecular orbital method for determination of atomic charges on polypeptides , 2007 .

[43]  Klaus Schulten,et al.  Accelerating Molecular Modeling Applications with GPU Computing , 2009 .

[44]  G. Oostergetel,et al.  Long‐range organization of bacteriochlorophyll in chlorosomes of Chlorobium tepidum investigated by cryo‐electron microscopy , 2007, FEBS letters.

[45]  M. Rätsep,et al.  Electron–phonon and vibronic couplings in the FMO bacteriochlorophyll a antenna complex studied by difference fluorescence line narrowing , 2007 .

[46]  D. Bryant,et al.  Bacteriochlorophyllide c C-82 and C-121 Methyltransferases Are Essential for Adaptation to Low Light in Chlorobaculum tepidum , 2007, Journal of bacteriology.

[47]  S. Itoh,et al.  Low-temperature fluorescence from single chlorosomes, photosynthetic antenna complexes of green filamentous and sulfur bacteria. , 2006, Biophysical journal.

[48]  T. Renger,et al.  Intermolecular coulomb couplings from ab initio electrostatic potentials: application to optical transitions of strongly coupled pigments in photosynthetic antennae and reaction centers. , 2006, The journal of physical chemistry. B.

[49]  Shawn T. Brown,et al.  Advances in methods and algorithms in a modern quantum chemistry program package. , 2006, Physical chemistry chemical physics : PCCP.

[50]  J. Linnanto,et al.  Quantum chemical simulation of excited states of chlorophylls, bacteriochlorophylls and their complexes. , 2006, Physical chemistry chemical physics : PCCP.

[51]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[52]  Robert Eugene Blankenship,et al.  The Ultrastructure of Chlorobium tepidum Chlorosomes Revealed by Electron Microscopy , 2005, Photosynthesis Research.

[53]  刘金明,et al.  IL-13受体α2降低血吸虫病肉芽肿的炎症反应并延长宿主存活时间[英]/Mentink-Kane MM,Cheever AW,Thompson RW,et al//Proc Natl Acad Sci U S A , 2005 .

[54]  T. Balaban Tailoring porphyrins and chlorins for self-assembly in biomimetic artificial antenna systems. , 2005, Accounts of chemical research.

[55]  Yuji Mochizuki,et al.  Configuration interaction singles method with multilayer fragment molecular orbital scheme , 2005 .

[56]  T. Goodson Optical excitations in organic dendrimers investigated by time-resolved and nonlinear optical spectroscopy. , 2005, Accounts of chemical research.

[57]  R. Tuma,et al.  Lamellar organization of pigments in chlorosomes, the light harvesting complexes of green photosynthetic bacteria. , 2004, Biophysical journal.

[58]  Junmei Wang,et al.  Development and testing of a general amber force field , 2004, J. Comput. Chem..

[59]  C. Hunter,et al.  Emitting excitonic polaron states in core LH1 and peripheral LH2 bacterial light-harvesting complexes , 2004 .

[60]  T. Gillbro,et al.  Excitation energy transfer dynamics and excited-state structure in chlorosomes of Chlorobium phaeobacteroides. , 2003, Biophysical journal.

[61]  Francesco Petruccione,et al.  The Theory of Open Quantum Systems , 2002 .

[62]  T. Miyatake,et al.  Energy Transfer in Supramolecular Artificial Antennae Units of Synthetic Zinc Chlorins and Co-aggregated Energy Traps. A Time-Resolved Fluorescence Study†,‡ , 2002 .

[63]  T. Yanagida,et al.  Spectral Heterogeneity in Single Light-harvesting Chlorosomes from Green Sulfur Photosynthetic Bacterium Chlorobium tepidum¶ , 2002, Photochemistry and photobiology.

[64]  I. Yamazaki,et al.  Oscillatory Excitation Transfer in Dithiaanthracenophane: Quantum Beat in a Coherent Photochemical Process in Solution † , 2002 .

[65]  Kaori Fukuzawa,et al.  Fragment molecular orbital method: use of approximate electrostatic potential , 2002 .

[66]  Klaus Schulten,et al.  Excitons in a photosynthetic light-harvesting system: a combined molecular dynamics, quantum chemistry, and polaron model study. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[67]  A. Holzwarth,et al.  Exciton dynamics in the chlorosomal antennae of the green bacteria Chloroflexus aurantiacus and Chlorobium tepidum. , 2000, Biophysical journal.

[68]  S. Grimme,et al.  A Theoretical Study of the Excited States of Chlorophyll a and Pheophytin a , 2000 .

[69]  C. Borrego,et al.  Light intensity effects on pigment composition and organisation in the green sulfur bacterium Chlorobium tepidum , 1999, Photosynthesis Research.

[70]  G. Fleming,et al.  Calculation of Couplings and Energy-Transfer Pathways between the Pigments of LH2 by the ab Initio Transition Density Cube Method , 1998 .

[71]  P. Malý,et al.  Fast Energy Transfer and Exciton Dynamics in Chlorosomes of the Green Sulfur Bacterium Chlorobium tepidum , 1998 .

[72]  Hiroshi Nakatsuji,et al.  Theoretical Study of the Excited States of Chlorin, Bacteriochlorin, Pheophytin a, and Chlorophyll a by the SAC/SAC-CI Method , 1998 .

[73]  J. Olson Chlorophyll Organization and Function in Green Photosynthetic Bacteria * , 1998 .

[74]  S. Mukamel,et al.  Polarons, localization, and excitonic coherence in superradiance of biological antenna complexes , 1997 .

[75]  D. Knaff,et al.  Anoxygenic photosynthetic bacteria , 1996, Photosynthesis Research.

[76]  G. Fleming,et al.  Excitation Transfer in the Core Light-Harvesting Complex (LH-1) of Rhodobacter sphaeroides: An Ultrafast Fluorescence Depolarization and Annihilation Study , 1995 .

[77]  Robert Eugene Blankenship,et al.  Ultrafast energy transfer in light-harvesting chlorosomes from the green sulfur bacterium Chlorobium tepidum. , 1995, Chemical physics.

[78]  Robert Eugene Blankenship,et al.  Femtosecond Spectroscopy of Chlorosome Antennas from the Green Photosynthetic Bacterium Chloroflexus aurantiacus , 1994 .

[79]  K. Mauring,et al.  Strongly exciton-coupled BChle chromophore system in the chlorosomal antenna of intact cells of the green bacteriumChlorobium phaeovibrioides: A spectral hole burning study , 1994, Photosynthesis Research.

[80]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[81]  R. Hochstrasser,et al.  The real‐time intramolecular electronic excitation transfer dynamics of 9’,9‐bifluorene and 2’,2‐binaphthyl in solution , 1993 .

[82]  Robert Eugene Blankenship,et al.  Energy transfer kinetics in whole cells and isolated chlorosomes of green photosynthetic bacteria , 1990, Photosynthesis Research.

[83]  K. Smith,et al.  Biosynthetic studies of substituent homologation in bacteriochlorophylls c and d. , 1990, Biochemistry.

[84]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[85]  D. Sherrington Stochastic Processes in Physics and Chemistry , 1983 .

[86]  L. Staehelin,et al.  Visualization of the supramolecular architecture of chlorosomes (chlorobium type vesicles) in freeze-fractured cells of Chloroflexus aurantiacus , 1978, Archives of Microbiology.

[87]  Hermann Haken,et al.  An exactly solvable model for coherent and incoherent exciton motion , 1973 .

[88]  Hermann Haken,et al.  The coupled coherent and incoherent motion of excitons and its influence on the line shape of optical absorption , 1972 .

[89]  A. Suna,et al.  Temperature Dependence of Triplet-Exciton-Dynamics in Anthracene Crystals , 1972 .

[90]  Ryogo Kubo,et al.  Note on the Stochastic Theory of Resonance Absorption , 1954 .

[91]  P. W. Anderson,et al.  A Mathematical Model for the Narrowing of Spectral Lines by Exchange or Motion , 1954 .

[92]  M. Bustamante,et al.  The Prokaryotes , 2014, Springer Berlin Heidelberg.

[93]  Jörg Overmann,et al.  The phototrophic way of life , 2005 .

[94]  T. Gillbro,et al.  Excitation energy transfer in chlorosomes of Chlorobium phaeobacteroides strain CL1401: the role of carotenoids , 2004, Photosynthesis Research.

[95]  J. Olson The FMO Protein , 2004, Photosynthesis Research.

[96]  A. Becke Density-functional thermochemistry. , 1996 .

[97]  J. Olson,et al.  Antenna Complexes from Green Photosynthetic Bacteria , 1995 .

[98]  M. Madigan,et al.  Anoxygenic Photosynthetic Bacteria , 1995, Advances in Photosynthesis and Respiration.

[99]  N. Kampen,et al.  Stochastic processes in physics and chemistry , 1981 .