KRAKENS: a superconducting MKID integral field spectrograph concept for the Keck I telescope

Microwave Kinetic Inductance Detectors, or MKIDS, have the ability to simultaneous resolve the wavelength of individual photons and time tag photons with microsecond precision. This opens up a number of exciting new possibilities and efficiency gains for optical/IR astronomy. In this paper we describe a plan to take the MKID technology, which we have demonstrated on the Palomar, Lick, and Subaru Telescopes, out of the realm of private instruments usable only by experts. Our goal is to incorporate MKIDs into a facility-class instrument at the Keck 1 Telescope that can be used by a large part of the astronomical community. This new instrument, the Keck Radiometer Array using KID ENergy Sensors (KRAKENS), will be a 30 kpix integral field spectrograph (IFS) with a 42.5” x 45” field of view, extraordinarily wide wavelength coverage from 380-1350 nm, and a spectral resolution R=λ/▵λ > 20 at 400 nm. Future add on modules could enable polarimetry and higher spectral resolution. KRAKENS will be built using the same style MKID arrays, cryostat, and similar readout electronics to those used in the successful 10 kpix DARKNESS instrument at Palomar and 20 kpix MEC instrument at Subaru, significantly reducing the technical risk.

[1]  Gautam Vasisht,et al.  DARKNESS: A Microwave Kinetic Inductance Detector Integral Field Spectrograph for High-contrast Astronomy , 2018, 1803.10420.

[2]  V. S. Dhillon,et al.  ULTRACAM: An Ultra-Fast, Triple-Beam CCD Camera for High-Speed Astrophysics , 2008 .

[3]  E. Oliva Wedged double Wollaston, a device for single shot polarimetric measurements , 1997 .

[4]  David Schiminovich,et al.  The Optical Spectrum of the Geminga Pulsar , 1998 .

[5]  Michael Porter,et al.  The Zwicky Transient Facility Camera , 2016, Astronomical Telescopes + Instrumentation.

[6]  M. Sullivan,et al.  The dependence of Type Ia Supernovae luminosities on their host galaxies , 2010, 1003.5119.

[7]  A. Rest,et al.  The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. IV. Detection of Near-infrared Signatures of r-process Nucleosynthesis with Gemini-South , 2017, 1710.05454.

[8]  Werner Becker,et al.  Vlt observations of the solitary millisecond pulsar psr j2124-3358 , 2003, astro-ph/0301114.

[9]  L. Zhang,et al.  A Three-dimensional Outer Magnetospheric Gap Model for Gamma-Ray Pulsars: Geometry, Pair Production, Emission Morphologies, and Phase-resolved Spectra , 2000 .

[10]  A. Pastorello,et al.  Slowly fading super-luminous supernovae that are not pair-instability explosions , 2013, Nature.

[11]  B. Bumble,et al.  EXCESS OPTICAL ENHANCEMENT OBSERVED WITH ARCONS FOR EARLY CRAB GIANT PULSES , 2013, 1309.3270.

[12]  C. Stoughton,et al.  THE ARCONS PIPELINE: DATA REDUCTION FOR MKID ARRAYS , 2015, 1507.05631.

[13]  M. Sullivan,et al.  The ESO/VLT 3rd year Type Ia supernova data set from the supernova legacy survey , 2009, 0909.3316.

[14]  Bruce Bumble,et al.  A superconducting focal plane array for ultraviolet, optical, and near-infrared astrophysics. , 2012, Optics express.

[15]  Dae-Sik Moon,et al.  A Near-Infrared Search for Counterparts to Three Pulsars in Young Supernova Remnants , 2006 .

[16]  Marc Postman,et al.  CLASH: A CENSUS OF MAGNIFIED STAR-FORMING GALAXIES AT Z Similar to 6-8 , 2014 .

[17]  B. Schutz Determining the Hubble constant from gravitational wave observations , 1986, Nature.

[18]  Danica Marsden,et al.  Giga-z: A 100,000 OBJECT SUPERCONDUCTING SPECTROPHOTOMETER FOR LSST FOLLOW-UP , 2013, 1307.5066.

[19]  A. Rest,et al.  The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. III. Optical and UV Spectra of a Blue Kilonova from Fast Polar Ejecta , 2017, 1710.05456.

[20]  John M. Martinis,et al.  A semiempirical model for two-level system noise in superconducting microresonators , 2008 .

[21]  M. Donahue,et al.  CLASH: A CENSUS OF MAGNIFIED STAR-FORMING GALAXIES AT z ∼ 6–8 , 2013, 1308.1692.

[22]  M. Strader,et al.  Digitial readout for microwave kinetic inductance detectors and applications in high time resolution astronomy , 2016 .

[23]  A. Rest,et al.  The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. VIII. A Comparison to Cosmological Short-duration Gamma-Ray Bursts , 2017, 1710.05438.

[24]  B. Bumble,et al.  Large-format platinum silicide microwave kinetic inductance detectors for optical to near-IR astronomy. , 2017, Optics express.

[25]  N. Bhat,et al.  Dispersion measure variations and their effect on precision pulsar timing , 2007, astro-ph/0702366.

[26]  P. Kerry,et al.  HiPERCAM: a high-speed quintuple-beam CCD camera for the study of rapid variability in the universe , 2016, Astronomical Telescopes + Instrumentation.

[27]  India,et al.  Deep optical observations of the fields of two nearby millisecond pulsars with the VLT , 2003, astro-ph/0301523.

[28]  Miguel de Val-Borro,et al.  Science-Driven Optimization of the LSST Observing Strategy , 2017, 1708.04058.

[29]  P. D'Avanzo,et al.  The optical counterpart of IGR J00291+5934 in quiescence , 2007 .

[30]  Armin Rest,et al.  The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. I. Discovery of the Optical Counterpart Using the Dark Energy Camera , 2017, The Astrophysical Journal.

[31]  J. Dyks,et al.  Relativistic Effects and Polarization in Three High-Energy Pulsar Models , 2004, astro-ph/0401255.

[32]  Donald W. Sweeney,et al.  LSST Science Book, Version 2.0 , 2009, 0912.0201.

[33]  Janusz Gil,et al.  On the Optical Pulsations from the Geminga Pulsar , 2001 .

[34]  B. A. Boom,et al.  Binary Black Hole Mergers in the First Advanced LIGO Observing Run , 2016, 1606.04856.

[35]  Japan,et al.  Subaru optical observations of the old pulsar PSR B0950+08 , 2002 .

[36]  F. Snik,et al.  OCTOCAM: a fast multi-channel imager and spectrograph proposed for the Gemini Observatory , 2016, Astronomical Telescopes + Instrumentation.

[37]  M. Sullivan,et al.  Supernova Legacy Survey: using spectral signatures to improve Type Ia supernovae as distance indicators , 2010, 1008.2308.

[38]  Jennifer Barnes,et al.  EFFECT OF A HIGH OPACITY ON THE LIGHT CURVES OF RADIOACTIVELY POWERED TRANSIENTS FROM COMPACT OBJECT MERGERS , 2013, 1303.5787.

[39]  Maxim Lyutikov,et al.  HOW ELSE CAN WE DETECT FAST RADIO BURSTS? , 2016, 1605.01468.

[40]  Daniel E. Holz,et al.  Short GRB and binary black hole standard sirens as a probe of dark energy , 2006 .

[41]  T. Sakamoto,et al.  The X-ray counterpart to the gravitational-wave event GW170817 , 2017, Nature.

[42]  The Ligo Scientific Collaboration,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral , 2017, 1710.05832.

[43]  B. Bumble,et al.  ARCONS: A 2024 Pixel Optical through Near-IR Cryogenic Imaging Spectrophotometer , 2013, 1306.4674.

[44]  H. Leduc,et al.  A broadband superconducting detector suitable for use in large arrays , 2003, Nature.

[45]  Nobuyuki Kawai,et al.  Subaru optical observations of the two middle-aged pulsars PSR B0656+14 and Geminga , 2005, astro-ph/0511311.

[46]  R. Mignani Optical, ultraviolet, and infrared observations of isolated neutron stars , 2009, 0912.2931.

[47]  Kevin France,et al.  Science with KRAKENS , 2015 .

[48]  Mark Sullivan,et al.  Predicted and Observed Evolution in the Mean Properties of Type Ia Supernovae with Redshift , 2007 .

[49]  R. P. Mignani,et al.  HST/FOC observations confirm the presence of a spectral feature in the optical spectrum of Geminga ? , 1998 .

[50]  B. Bumble,et al.  Search for optical pulsations in PSR J0337+1715 , 2016, 1603.05270.

[51]  B. Bumble,et al.  High quality factor platinum silicide microwave kinetic inductance detectors , 2016, 1610.00725.

[52]  Michael Shao,et al.  CHIMERA: a wide-field, multi-colour, high-speed photometer at the prime focus of the Hale telescope , 2016, 1601.03104.

[53]  Dan Werthimer,et al.  A readout for large arrays of microwave kinetic inductance detectors. , 2012, The Review of scientific instruments.

[54]  George G. Pavlov,et al.  MULTIWAVELENGTH SPECTROSCOPY OF PSR B0656+14 , 2011, 1109.1984.

[55]  Paul Szypryt,et al.  Design and Development Status of MKID Integral Field Spectrographs for High Contrast Imaging , 2015 .

[56]  V. S. Dhillon,et al.  ULTRACAM: an ultrafast, triple-beam CCD camera for high-speed astrophysics , 2007 .

[57]  Michal Frackowiak,et al.  High-Altitude Emission from Pulsar Slot Gaps: The Crab Pulsar , 2008, 0803.0699.

[58]  M. Sullivan,et al.  DES13S2cmm: the first superluminous supernova from the Dark Energy Survey , 2015, 1501.07232.

[59]  P. Lundqvist,et al.  Deep BVR imaging of the field of the millisecond pulsar PSR J0030+0451 with the VLT , 2003 .

[60]  B. Kern,et al.  OPTICAL PULSE-PHASED PHOTOPOLARIMETRY OF PSR B0656+14 , 2003 .