Coherent electron-spin-resonance manipulation of three individual spins in a triple quantum dot

Quantum dot arrays provide a promising platform for quantum information processing. For universal quantum simulation and computation, one central issue is to demonstrate the exhaustive controllability of quantum states. Here, we report the addressable manipulation of three single electron spins in a triple quantum dot using a technique combining electron-spin-resonance and a micro-magnet. The micro-magnet makes the local Zeeman field difference between neighboring spins much larger than the nuclear field fluctuation, which ensures the addressable driving of electron-spin-resonance by shifting the resonance condition for each spin. We observe distinct coherent Rabi oscillations for three spins in a semiconductor triple quantum dot with up to 25 MHz spin rotation frequencies. This individual manipulation over three spins enables us to arbitrarily change the magnetic spin quantum number of the three spin system, and thus to operate a triple-dot device as a three-qubit system in combination with the existing technique of exchange operations among three spins.

[1]  L. Vandersypen,et al.  Single-shot read-out of an individual electron spin in a quantum dot , 2004, Nature.

[2]  S Tarucha,et al.  Fast electrical control of single electron spins in quantum dots with vanishing influence from nuclear spins. , 2014, Physical review letters.

[3]  L. Vandersypen,et al.  Supporting Online Material for Coherent Control of a Single Electron Spin with Electric Fields Materials and Methods Som Text Figs. S1 and S2 References , 2022 .

[4]  M. Manfra,et al.  Full control of quadruple quantum dot circuit charge states in the single electron regime , 2014, 1404.6047.

[5]  D. Loss,et al.  Single-spin manipulation in a double quantum dot in the field of a micromagnet , 2014, 1405.7618.

[6]  Jacob M. Taylor,et al.  Triplet–singlet spin relaxation via nuclei in a double quantum dot , 2005, Nature.

[7]  Jacob M. Taylor,et al.  Quantum-dot-based resonant exchange qubit. , 2013, Physical review letters.

[8]  M. Lukin,et al.  Relaxation, dephasing, and quantum control of electron spins in double quantum dots , 2006, cond-mat/0602470.

[9]  A. Gossard,et al.  A Coherent Beam Splitter for Electronic Spin States , 2010, Science.

[10]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[11]  A. Gossard,et al.  Fast single-charge sensing with a rf quantum point contact , 2007, 0707.2946.

[12]  C. Buizert,et al.  Driven coherent oscillations of a single electron spin in a quantum dot , 2006, Nature.

[13]  J. P. Dehollain,et al.  A two-qubit logic gate in silicon , 2014, Nature.

[14]  Jacob M. Taylor,et al.  Self-consistent measurement and state tomography of an exchange-only spin qubit. , 2013, Nature nanotechnology.

[15]  P Stano,et al.  Quantum Dephasing in a Gated GaAs Triple Quantum Dot due to Nonergodic Noise. , 2015, Physical review letters.

[16]  L. Vandersypen,et al.  Spins in few-electron quantum dots , 2006, cond-mat/0610433.

[17]  Adele E. Schmitz,et al.  Isotopically enhanced triple-quantum-dot qubit , 2015, Science Advances.

[18]  A. Gossard,et al.  Rapid single-shot measurement of a singlet-triplet qubit. , 2009, Physical review letters.

[19]  L. Vandersypen,et al.  Universal phase shift and nonexponential decay of driven single-spin oscillations. , 2007, Physical review letters.

[20]  Takashi Nakajima,et al.  Robust micromagnet design for fast electrical manipulations of single spins in quantum dots , 2015, 1507.01765.

[21]  L. Vandersypen,et al.  Control and Detection of Singlet-Triplet Mixing in a Random Nuclear Field , 2005, Science.

[22]  A. C. Gossard,et al.  Fast Sensing of Double-Dot Charge Arrangement and Spin State with a Radio-Frequency Sensor Quantum Dot , 2010, 1001.3585.

[23]  W. G. van der Wiel,et al.  Coherent single electron spin control in a slanting Zeeman field. , 2005, Physical review letters.

[24]  S. Tarucha,et al.  Triple quantum dot device designed for three spin qubits , 2010 .

[25]  L. Vandersypen,et al.  Single-spin CCD. , 2015, Nature nanotechnology.

[26]  S. Tarucha,et al.  Electrically driven single-electron spin resonance in a slanting Zeeman field , 2008, 0805.1083.

[27]  L. M. K. Vandersypen,et al.  Single-Shot Correlations and Two-Qubit Gate of Solid-State Spins , 2011, Science.

[28]  Z. Wasilewski,et al.  Bipolar spin blockade and coherent state superpositions in a triple quantum dot. , 2013, Nature nanotechnology.

[29]  D. Awschalom,et al.  Quantum Spintronics: Engineering and Manipulating Atom-Like Spins in Semiconductors , 2013, Science.

[30]  Lande g Factors and Orbital Momentum Quenching in Semiconductor Quantum Dots , 2004, cond-mat/0410678.

[31]  S. Tarucha,et al.  Single to quadruple quantum dots with tunable tunnel couplings , 2014, 1401.2212.

[32]  L. P. Kouwenhoven,et al.  Spin–orbit qubit in a semiconductor nanowire , 2010, Nature.

[33]  Z. R. Wasilewski,et al.  Coherent control of three-spin states in a triple quantum dot , 2011, Nature Physics.

[34]  R Brunner,et al.  Two-qubit gate of combined single-spin rotation and interdot spin exchange in a double quantum dot. , 2011, Physical review letters.

[35]  Y. Salathe,et al.  Deterministic quantum teleportation with feed-forward in a solid state system , 2013, Nature.

[36]  A. Yacoby,et al.  Demonstration of Entanglement of Electrostatically Coupled Singlet-Triplet Qubits , 2012, Science.

[37]  L. Gaudreau,et al.  A tunable few electron triple quantum dot , 2009, 0907.1322.

[38]  Jacob M. Taylor,et al.  Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots , 2005, Science.