Orthogonal polynomial ensembles in probability theory

We survey a number of models from physics, statistical mechanics, probability theory and combinatorics, which are each described in terms of an {it orthogonal polynomial ensemble}. The most prominent example is apparently the Hermite ensemble, the eigenvalue distribution of the Gaussian Unitary Ensemble (GUE), and other well-known ensembles known in random matrix theory like the Laguerre ensemble for the spectrum of Wishart matrices. In recent years, a number of further interesting models were found to lead to orthogonal polynomial ensembles, among which the corner growth model, directed last passage percolation, the PNG droplet, non-colliding random processes, the length of the longest increasing subsequence of a random permutation, and others. Much attention has been paid to universal classes of asymptotic behaviors of these models in the limit of large particle numbers, in particular the spacings between the particles and the fluctuation behavior of the largest particle. Computer simulations suggest that the connections go even farther and also comprise the zeros of the Riemann zeta function. The existing proofs require a substantial technical machinery and heavy tools from various parts of mathematics, in particular complex analysis, combinatorics and variational analysis. Particularly in the last decade, a number of fine results have been achieved, but it is obvious that a comprehensive and thorough understanding of the matter is still lacking. Hence, it seems an appropriate time to provide a surveying text on this research area. In the present text, we introduce various models, explain the questions and problems, and point out the relations between the models. Furthermore, we concisely outline some elements of the proofs of some of the most important results. This text is aimed at non-experts with strong background in probability who want to achieve a quick survey over the field.

[1]  J. Wishart THE GENERALISED PRODUCT MOMENT DISTRIBUTION IN SAMPLES FROM A NORMAL MULTIVARIATE POPULATION , 1928 .

[2]  E. Wigner Characteristic Vectors of Bordered Matrices with Infinite Dimensions I , 1955 .

[3]  E. Wigner On the Distribution of the Roots of Certain Symmetric Matrices , 1958 .

[4]  M. L. Mehta,et al.  ON THE STATISTICAL PROPERTIES OF THE LEVEL-SPACINGS IN NUCLEAR SPECTRA , 1960 .

[5]  C. Schensted Longest Increasing and Decreasing Subsequences , 1961, Canadian Journal of Mathematics.

[6]  F. Dyson Statistical Theory of the Energy Levels of Complex Systems. I , 1962 .

[7]  Freeman J. Dyson,et al.  The Threefold Way. Algebraic Structure of Symmetry Groups and Ensembles in Quantum Mechanics , 1962 .

[8]  F. Dyson A Brownian‐Motion Model for the Eigenvalues of a Random Matrix , 1962 .

[9]  A. James Distributions of Matrix Variates and Latent Roots Derived from Normal Samples , 1964 .

[10]  Donald E. Knuth,et al.  PERMUTATIONS, MATRICES, AND GENERALIZED YOUNG TABLEAUX , 1970 .

[11]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[12]  V. Uppuluri,et al.  Asymptotic distribution of eigenvalues of random matrices , 1972 .

[13]  Harold M. Edwards,et al.  Riemann's Zeta Function , 1974 .

[14]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[15]  M. Jimbo,et al.  Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendent , 1980 .

[16]  S. P. Hastings,et al.  A boundary value problem associated with the second painlevé transcendent and the Korteweg-de Vries equation , 1980 .

[17]  P. Gallagher Pair correlation of zeros of the zeta function. , 1985 .

[18]  H. Kesten Aspects of first passage percolation , 1986 .

[19]  D. R. Heath-Brown,et al.  The Theory of the Riemann Zeta-Function , 1987 .

[20]  A. Odlyzko On the distribution of spacings between zeros of the zeta function , 1987 .

[21]  Athanassios S. Fokas,et al.  COMMUNICATIONS OF THE MOSCOW MATHEMATICAL SOCIETY: The isomonodromy approach in the theory of two-dimensional quantum gravitation , 1990 .

[22]  Ira M. Gessel,et al.  Symmetric functions and P-recursiveness , 1990, J. Comb. Theory, Ser. A.

[23]  Bruce E. Sagan,et al.  The symmetric group - representations, combinatorial algorithms, and symmetric functions , 2001, Wadsworth & Brooks / Cole mathematics series.

[24]  Athanassios S. Fokas,et al.  Discrete Painlevé equations and their appearance in quantum gravity , 1991 .

[25]  M. Bowick,et al.  Universal scaling of the tail of the density of eigenvalues in random matrix models , 1991 .

[26]  C. Tracy,et al.  Introduction to Random Matrices , 1992, hep-th/9210073.

[27]  P. Deift,et al.  A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation , 1993 .

[28]  P. Forrester The spectrum edge of random matrix ensembles , 1993 .

[29]  D. Voiculescu The analogues of entropy and of Fisher's information measure in free probability theory, I , 1993 .

[30]  Craig A. Tracy,et al.  Mathematical Physics © Springer-Verlag 1994 Fredholm Determinants, Differential Equations and Matrix Models , 2022 .

[31]  C. Tracy,et al.  Level-spacing distributions and the Airy kernel , 1992, hep-th/9211141.

[32]  P. Diaconis,et al.  On the eigenvalues of random matrices , 1994, Journal of Applied Probability.

[33]  D. Voiculescu The analogues of entropy and of Fisher's information measure in free probability theory, II , 1994 .

[34]  J. Verbaarschot The spectrum of the Dirac operator near zero virtuality for Nc = 2 and chiral random matrix theory , 1994 .

[35]  A. Barabasi,et al.  Fractal concepts in surface growth , 1995 .

[36]  P. Deift,et al.  Asymptotics for the painlevé II equation , 1995 .

[37]  C. Tracy,et al.  Mathematical Physics © Springer-Verlag 1996 On Orthogonal and Symplectic Matrix Ensembles , 1995 .

[38]  G. Vojta,et al.  Fractal Concepts in Surface Growth , 1996 .

[39]  Riemannian symmetric superspaces and their origin in random‐matrix theory , 1996, math-ph/9808012.

[40]  Random matrix theory of a chaotic Andreev quantum dot. , 1995, Physical review letters.

[41]  Wendelin Werner,et al.  Non-Colliding Brownian Motions on the Circle , 1996 .

[42]  Alexander Its,et al.  A Riemann-Hilbert approach to asymptotic problems arising in the theory of random matrix models, and also in the theory of integrable statistical mechanics , 1997 .

[43]  L. Pastur,et al.  Universality of the local eigenvalue statistics for a class of unitary invariant random matrix ensembles , 1997 .

[44]  Stephanos Venakides,et al.  New results in small dispersion KdV by an extension of the steepest descent method for Riemann-Hilbert problems , 1997 .

[45]  David J. Grabiner Brownian Motion in a Weyl Chamber, Non-Colliding Particles, and Random Matrices , 1997, math/9708207.

[46]  Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures , 1996, cond-mat/9602137.

[47]  Alice Guionnet,et al.  Large deviations for Wigner's law and Voiculescu's non-commutative entropy , 1997 .

[48]  E. Saff,et al.  Logarithmic Potentials with External Fields , 1997 .

[49]  J. Baik,et al.  On the distribution of the length of the longest increasing subsequence of random permutations , 1998, math/9810105.

[50]  Paul Meakin,et al.  Fractals, scaling, and growth far from equilibrium , 1998 .

[51]  K. Johansson On fluctuations of eigenvalues of random Hermitian matrices , 1998 .

[52]  Percy Deift,et al.  New Results on the Equilibrium Measure for Logarithmic Potentials in the Presence of an External Field , 1998 .

[53]  G. Olshanski,et al.  Asymptotics of Plancherel measures for symmetric groups , 1999, math/9905032.

[54]  yuliy baryshnikov GUEs and queues , 1999 .

[55]  Craig A. Tracy,et al.  Universality of the distribution functions of random matrix theory , 1999 .

[56]  J. Baik,et al.  The asymptotics of monotone subsequences of involutions , 1999, math/9905084.

[57]  P. Diaconis,et al.  Longest increasing subsequences: from patience sorting to the Baik-Deift-Johansson theorem , 1999 .

[58]  K. Johansson Shape Fluctuations and Random Matrices , 1999, math/9903134.

[59]  K. Johansson Discrete orthogonal polynomial ensembles and the Plancherel measure. , 1999, math/9906120.

[60]  Pavel Bleher,et al.  Semiclassical asymptotics of orthogonal polynomials, Riemann-Hilbert problem, and universality in the matrix model , 1999, math-ph/9907025.

[61]  A. Soshnikov Universality at the Edge of the Spectrum¶in Wigner Random Matrices , 1999, math-ph/9907013.

[62]  J. Baik,et al.  On the distribution of the length of the second row of a Young diagram under Plancherel measure , 1999, math/9901118.

[63]  Stephanos Venakides,et al.  UNIFORM ASYMPTOTICS FOR POLYNOMIALS ORTHOGONAL WITH RESPECT TO VARYING EXPONENTIAL WEIGHTS AND APPLICATIONS TO UNIVERSALITY QUESTIONS IN RANDOM MATRIX THEORY , 1999 .

[64]  P. Sarnak,et al.  Zeroes of zeta functions and symmetry , 1999 .

[65]  Janko Gravner,et al.  Limit Theorems for Height Fluctuations in a Class of Discrete Space and Time Growth Models , 2000 .

[66]  Eric Todd Quinto,et al.  Analysis, geometry, number theory : the mathematics of Leon Ehrenpreis , 2000 .

[67]  F. Hiai,et al.  The semicircle law, free random variables, and entropy , 2006 .

[68]  K. Johansson Non-intersecting paths, random tilings and random matrices , 2000, math/0011250.

[69]  Persi Diaconis,et al.  Linear functionals of eigenvalues of random matrices , 2000 .

[70]  N. Snaith,et al.  Random Matrix Theory and ζ(1/2+it) , 2000 .

[71]  H. Spohn,et al.  Statistical Self-Similarity of One-Dimensional Growth Processes , 1999, cond-mat/9910273.

[72]  Random vicious walks and random matrices , 2000, math/0001022.

[73]  P. Deift Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach , 2000 .

[74]  Spohn,et al.  Universal distributions for growth processes in 1+1 dimensions and random matrices , 2000, Physical review letters.

[75]  H. Spohn,et al.  Scale Invariance of the PNG Droplet and the Airy Process , 2001, math/0105240.

[76]  Kurt Johansson,et al.  Random Growth and Random Matrices , 2001 .

[77]  Neil O'Connell,et al.  Eigenvalues of the Laguerre Process as Non-Colliding Squared Bessel Processes , 2001 .

[78]  Stephanos Venakides,et al.  A Riemann-Hilbert approach to asymptotic questions for orthogonal polynomials , 2001 .

[79]  K. Johansson Universality of the Local Spacing Distribution¶in Certain Ensembles of Hermitian Wigner Matrices , 2000, math-ph/0006020.

[81]  Neil O'Connell,et al.  Non-Colliding Random Walks, Tandem Queues, and DiscreteOrthogonal Polynomial Ensembles , 2002 .

[82]  Scaling limit of vicious walks and two-matrix model. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[83]  P. Bougerol,et al.  Paths in Weyl chambers and random matrices , 2002 .

[84]  Marc Yor,et al.  A Representation for Non-Colliding Random Walks , 2002 .

[85]  Neil O'Connell,et al.  Random matrices, non-colliding processes and queues , 2002, math/0203176.

[86]  N. O'Connell,et al.  PATTERNS IN EIGENVALUES: THE 70TH JOSIAH WILLARD GIBBS LECTURE , 2003 .

[87]  P. Diaconis Patterns in eigenvalues: the 70th Josiah Willard Gibbs lecture , 2003 .

[88]  M. Praehofer,et al.  Stochastic Surface Growth , 2003 .

[89]  Arno B. J. Kuijlaars,et al.  Riemann-Hilbert Analysis for Orthogonal Polynomials , 2003 .

[90]  Noncolliding Brownian motions and Harish-Chandra formula , 2003, math/0306386.

[91]  Infinite systems of non-colliding Brownian particles , 2003, math/0301143.

[92]  K. Johansson The Arctic circle boundary and the airy process , 2003, math/0306216.

[93]  A note on representations of eigenvalues of classical Gaussian matrices , 2003 .

[94]  Kurt Johansson Discrete Polynuclear Growth and Determinantal Processes , 2003 .

[95]  A. Its The Riemann-Hilbert Problem and Integrable Systems , 2003 .

[96]  P. J. Forrester,et al.  Developments in random matrix theory , 2003, cond-mat/0303207.

[97]  Polynuclear Growth on a Flat Substrate and Edge Scaling of GOE Eigenvalues , 2004, math-ph/0402053.

[98]  Fluctuations of the One-Dimensional Polynuclear Growth Model in Half-Space , 2003, cond-mat/0307011.

[99]  Makoto Katori,et al.  Symmetry of matrix-valued stochastic processes and noncolliding diffusion particle systems , 2004 .

[100]  Jonas Gustavsson Gaussian fluctuations of eigenvalues in the GUE , 2004 .

[101]  Fluctuations of the one-dimensional polynuclear growth model with external sources , 2004, math-ph/0406001.

[102]  Nobuo Yoshida,et al.  Probabilistic analysis of directed polymers in a random environment: a review , 2004 .

[103]  P. Ferrari Shape fluctuations of crystal facets and surface growth in one dimension , 2004 .

[105]  Littelmann paths and Brownian paths , 2004, math/0403171.

[106]  A GUE central limit theorem and universality of directed first andlast passage site percolation , 2004, math/0412369.

[107]  Universality in Random Matrix Theory for orthogonal and symplectic ensembles , 2004, math-ph/0411075.

[108]  The Arctic circle boundary and the airy process , 2005 .

[109]  Matrices aléatoires, processus stochastiques et groupes de réflexions , 2005 .

[110]  One-dimensional stochastic growth and Gaussian ensembles of random matrices , 2005, math-ph/0505038.

[111]  M. Vanlessen,et al.  Strong Asymptotics of Laguerre-Type Orthogonal Polynomials and Applications in Random Matrix Theory , 2005 .

[112]  Universality at the edge of the spectrum for unitary, orthogonal, and symplectic ensembles of random matrices , 2005, math-ph/0507023.

[113]  P. Eichelsbacher,et al.  Ordered Random Walks , 2006, math/0610850.

[114]  Universality for Orthogonal and Symplectic Laguerre-Type Ensembles , 2006, math-ph/0612007.