PlanetProfile: Self‐Consistent Interior Structure Modeling for Ocean Worlds and Rocky Dwarf Planets in Python

The open‐source PlanetProfile framework was developed to investigate the interior structure of icy moons based on collectively matching their observed properties and comparative planetology. The software relates observed and measured properties, assumptions such as the type of materials present, and laboratory equation‐of‐state (EOS) data through geophysical and thermodynamic models to evaluate radial profiles of mechanical, thermodynamic, and electrical properties, as self‐consistently as possible. We have created a Python version of PlanetProfile. In the process, we have made optimization improvements and added parallelization and parameter‐space search features to utilize fast operation for investigating unresolved questions in planetary geophysics, in which many model inputs are poorly constrained. The Python version links to other scientific software packages, including for evaluating EOS data, magnetic induction calculations, and seismic calculations. Physical models in PlanetProfile have been reconfigured to improve self‐consistency and generate the most realistic relationships between properties. In this work, we focus on the description of the software design and algorithms in detail, summarize model results for major moons across the outer solar system, and discuss new inferences about the interior structure of several bodies. The high values and narrow uncertainty ranges reported for the axial moments of inertia for Callisto, Titan, and Io are difficult to reconcile with the realistic physical and chemical approximations applied, requiring highly porous rock layers equivalent to incomplete differentiation for Callisto and Titan, and a high rock melt fraction for Io. Radial profiles for each model and comparison to prior work are provided as Zenodo archives.

[1]  T. Heister,et al.  BurnMan - a Python toolkit for planetary geophysics, geochemistry and thermodynamics , 2023, J. Open Source Softw..

[2]  F. Nimmo,et al.  Estimates for Tethys' Moment of Inertia, Heat Flux Distribution, and Interior Structure From Its Long‐Wavelength Topography , 2023, Journal of Geophysical Research: Planets.

[3]  G. Spada,et al.  On computing viscoelastic Love numbers for general planetary models: the ALMA3 code , 2022, Geophysical Journal International.

[4]  C. Sotin,et al.  Dynamics of Mixed Clathrate‐Ice Shells on Ocean Worlds , 2022, Geophysical Research Letters.

[5]  A. Rhoden,et al.  The case for an ocean-bearing Mimas from tidal heating analysis , 2022, Icarus.

[6]  S. Constable,et al.  Electrical Properties of Carbon Dioxide Hydrate: Implications for Monitoring CO2 in the Gas Hydrate Stability Zone , 2021, Geophysical Research Letters.

[7]  E. Harnett,et al.  A perturbation method for evaluating the magnetic field induced from an arbitrary, asymmetric ocean world analytically , 2021, Icarus.

[8]  M. Hesse,et al.  A comprehensive dataset for the thermal conductivity of ice Ih for application to planetary ice shells , 2021, Data in brief.

[9]  K. Lodders Relative Atomic Solar System Abundances, Mass Fractions, and Atomic Masses of the Elements and Their Isotopes, Composition of the Solar Photosphere, and Compositions of the Major Chondritic Meteorite Groups , 2021, Space Science Reviews.

[10]  G. Tobie,et al.  Tidally Induced Magmatic Pulses on the Oceanic Floor of Jupiter's Moon Europa , 2021, Geophysical Research Letters.

[11]  K. Soderlund,et al.  Magnetic Induction Responses of Jupiter's Ocean Moons Including Effects From Adiabatic Convection , 2020, Journal of Geophysical Research: Planets.

[12]  C. Glein,et al.  A Metamorphic Origin for Europa's Ocean , 2020, Geophysical research letters.

[13]  C. Glein,et al.  The Carbonate Geochemistry of Enceladus' Ocean , 2020, Geophysical Research Letters.

[14]  J. E. White,et al.  Seismic Wave Propagation , 2020, The Rock Physics Handbook.

[15]  Jennifer M. Brown,et al.  Holistic Approach for Studying Planetary Hydrospheres: Gibbs Representation of Ices Thermodynamics, Elasticity, and the Water Phase Diagram to 2,300 MPa , 2020, Journal of Geophysical Research: Planets.

[16]  C. Sotin,et al.  A carbonaceous chondrite and cometary origin for icy moons of Jupiter and Saturn , 2020, Earth and Planetary Science Letters.

[17]  G. Flierl,et al.  Spontaneous formation of geysers at only one pole on Enceladus’s ice shell , 2019, Proceedings of the National Academy of Sciences.

[18]  T. Mittal,et al.  Enceladus's ice shell structure as a window on internal heat production , 2019, Icarus.

[19]  Berkeley,et al.  The gravity field and interior structure of Dione , 2019, Icarus.

[20]  G. H. Shaw,et al.  Thermodynamics of pure liquid water: Sound speed measurements to 700 MPa down to the freezing point, and an equation of state to 2300 MPa from 240 to 500 K , 2019, The Journal of Chemical Physics.

[21]  L. Iess,et al.  Titan's gravity field and interior structure after Cassini , 2019, Icarus.

[22]  Michael E. Brown,et al.  Sodium chloride on the surface of Europa , 2019, Science Advances.

[23]  F. Nimmo,et al.  Pluto’s ocean is capped and insulated by gas hydrates , 2019, Nature Geoscience.

[24]  David Kappel,et al.  Comet 67P/CG Nucleus Composition and Comparison to Other Comets , 2019, Space Science Reviews.

[25]  J. Connolly,et al.  Electrolytic fluid speciation by Gibbs energy minimization and implications for subduction zone mass transfer , 2018, Earth and Planetary Science Letters.

[26]  R. Powell,et al.  Melting of Peridotites through to Granites: A Simple Thermodynamic Model in the System KNCFMASHTOCr , 2018 .

[27]  A. Conrad,et al.  Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements: 2015 , 2018 .

[28]  Frances Westall,et al.  The Importance of Water for Life , 2018 .

[29]  J. Berthelier,et al.  Halogens as tracers of protosolar nebula material in comet 67P/Churyumov–Gerasimenko , 2017 .

[30]  Harry Lehto,et al.  Carbon-rich dust in comet 67P/Churyumov-Gerasimenko measured by COSIMA/Rosetta , 2017 .

[31]  T. Nissen‐Meyer,et al.  Seismic Wave Propagation in Icy Ocean Worlds , 2017, 1705.03500.

[32]  J. Maclennan,et al.  The Composition of Melts from a Heterogeneous Mantle and the Origin of Ferropicrite: Application of a Thermodynamic Model , 2016 .

[33]  J. Moore,et al.  Reorientation of Sputnik Planitia implies a subsurface ocean on Pluto , 2016, Nature.

[34]  A. Rivoldini,et al.  Enceladus's and Dione's floating ice shells supported by minimum stress isostasy , 2016, 1610.00548.

[35]  Robert T. Pappalardo,et al.  Ocean worlds in the outer solar system , 2016 .

[36]  Amy C. Barr,et al.  Recent tectonic activity on Pluto driven by phase changes in the ice shell , 2016, 1606.04840.

[37]  K. Hand,et al.  Geophysical controls of chemical disequilibria in Europa , 2016 .

[38]  J. Kimura,et al.  Stability of the subsurface ocean of Pluto , 2016, Planetary and Space Science.

[39]  F. Scholten,et al.  A homogeneous nucleus for comet 67P/Churyumov–Gerasimenko from its gravity field , 2016, Nature.

[40]  S. Ji,et al.  Effects of porosity on seismic velocities, elastic moduli and Poisson's ratios of solid materials and rocks , 2016 .

[41]  J. P. Harrison,et al.  Habitability: A Review. , 2016, Astrobiology.

[42]  S. Saxena,et al.  Thermodynamics of Fe–S at ultra-high pressure , 2015 .

[43]  Martin Rubin,et al.  Inventory of the volatiles on comet 67P/Churyumov-Gerasimenko from Rosetta/ROSINA , 2015 .

[44]  J. A. Burns,et al.  Enceladus's measured physical libration requires a global subsurface ocean , 2015, 1509.07555.

[45]  E. Chassefière,et al.  Methane clathrates in the solar system. , 2015, Astrobiology.

[46]  Sascha Kempf,et al.  Ongoing hydrothermal activities within Enceladus , 2015, Nature.

[47]  S Kjelstrup,et al.  Compressibility, thermal expansion coefficient and heat capacity of CH4 and CO2 hydrate mixtures using molecular dynamics simulations. , 2015, Physical chemistry chemical physics : PCCP.

[48]  M. Showalter,et al.  The orbits and masses of satellites of Pluto , 2015 .

[49]  S. Charnoz,et al.  Constraints on Mimas’ interior from Cassini ISS libration measurements , 2014, Science.

[50]  V. M. Shmonov,et al.  The porosity trend and pore sizes of the rocks in the continental crust of the earth: Evidence from experimental data on permeability , 2014, Izvestiya, Physics of the Solid Earth.

[51]  Simon C. Stähler,et al.  AxiSEM: broadband 3-D seismic wavefields in axisymmetric media , 2014 .

[52]  Christophe Sotin,et al.  Ganymede's internal structure including thermodynamics of magnesium sulfate oceans in contact with ice , 2014 .

[53]  S. W. Asmar,et al.  The Gravity Field and Interior Structure of Enceladus , 2014, Science.

[54]  S. Holmes,et al.  Global characteristics of porosity and density stratification within the lunar crust from GRAIL gravity and Lunar Orbiter Laser Altimeter topography data , 2014 .

[55]  C. Garrido,et al.  Tschermak's substitution in antigorite and consequences for phase relations and water liberation in high-grade serpentinites , 2013 .

[56]  David J. Stevenson,et al.  Nonhydrostatic effects and the determination of icy satellites' moment of inertia , 2013, 1309.1205.

[57]  I. Daniel,et al.  Influence of NaCl on ice VI and ice VII melting curves up to 6 GPa, implications for large icy moons , 2013 .

[58]  Jennifer M. Brown,et al.  Thermodynamic properties of aqueous MgSO 4 to 800 MPa at temperatures from 20 to 100 C and concentrations to 2.5 mol kg 1 from sound speeds, with applications to icy world oceans , 2013 .

[59]  C. Davies,et al.  Thermal and electrical conductivity of iron at Earth’s core conditions , 2012, Nature.

[60]  C. Russell,et al.  Evidence of a Global Magma Ocean in Io’s Interior , 2011, Science.

[61]  Roger Powell,et al.  An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids , 2011 .

[62]  M. Choukroun,et al.  Thermodynamic data and modeling of the water and ammonia-water phase diagrams up to 2.2 GPa for planetary geophysics. , 2010, The Journal of chemical physics.

[63]  Lion Krischer,et al.  ObsPy: A Python Toolbox for Seismology , 2010 .

[64]  J. Pearl,et al.  Thermal inertia and bolometric Bond albedo values for Mimas, Enceladus, Tethys, Dione, Rhea and Iapetus as derived from Cassini/CIRS measurements , 2010 .

[65]  C. Sotin,et al.  Stability of methane clathrate hydrates under pressure: Influence on outgassing processes of methane on Titan , 2010 .

[66]  James A. D. Connolly,et al.  The geodynamic equation of state: What and how , 2009 .

[67]  J. Arlot,et al.  Strong tidal dissipation in Io and Jupiter from astrometric observations , 2009, Nature.

[68]  A. Nur,et al.  Elastic wave speeds and moduli in polycrystalline ice Ih, sI methane hydrate, and sII methane‐ethane hydrate , 2009 .

[69]  Giorgio Spada,et al.  ALMA, a Fortran program for computing the viscoelastic Love numbers of a spherically symmetric planet , 2008, Comput. Geosci..

[70]  David Morin,et al.  Introduction to Classical Mechanics: With Problems and Solutions , 2008 .

[71]  Jennifer M. Brown,et al.  Hydrothermal systems in small ocean planets. , 2007, Astrobiology.

[72]  S. Asmar,et al.  Gravity field and interior of Rhea from Cassini data analysis , 2007 .

[73]  R. Powell,et al.  An order-disorder model for omphacitic pyroxenes in the system jadeite-diopsidehedenbergite- acmite, with applications to eclogitic rocks , 2007 .

[74]  D. W. Parcher,et al.  The Gravity Field of the Saturnian System from Satellite Observations and Spacecraft Tracking Data , 2006 .

[75]  T. Spohn,et al.  Subsurface oceans and deep interiors of medium-sized outer planet satellites and large trans-neptunian objects , 2006 .

[76]  W. McKinnon On convection in ice I shells of outer Solar System bodies, with detailed application to Callisto , 2006 .

[77]  Christopher F Chyba,et al.  Clathrate hydrates of oxidants in the ice shell of Europa. , 2006, Astrobiology.

[78]  Rainer Feistel,et al.  A New Equation of State for H2O Ice Ih , 2006 .

[79]  Gabriel Tobie,et al.  Tidal dissipation within large icy satellites: Applications to Europa and Titan , 2005 .

[80]  James A. D. Connolly,et al.  Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation , 2005 .

[81]  O. Andersson,et al.  Thermal Conductivity of Crystalline and Amorphous Ices and Its Implications on Amorphization and Glassy Water , 2005 .

[82]  R. Beebe Jupiter: The Planet, Satellites and Magnetosphere , 2005 .

[83]  L. Travis,et al.  Mapping of Io's thermal radiation by the Galileo photopolarimeter-radiometer (PPR) instrument , 2004 .

[84]  H. Melosh,et al.  The temperature of Europa's subsurface water ocean , 2004 .

[85]  W. Moore Tidal heating and convection in Io , 2003 .

[86]  R. Jacobson The gravity field of the Saturnian system , 2003 .

[87]  C. Russell,et al.  Searching for liquid water in Europa by using surface observatories. , 2002, Astrobiology.

[88]  J. Anderson,et al.  Io's gravity field and interior structure , 2001 .

[89]  J. Anderson,et al.  Shape, Mean Radius, Gravity Field, and Interior Structure of Callisto , 2001 .

[90]  C. Sotin,et al.  Thermal convection in the outer shell of large icy satellites , 2001 .

[91]  L. Rothschild,et al.  Life in extreme environments , 2001, Nature.

[92]  M. Kivelson,et al.  Subsurface Oceans on Europa and Callisto: Constraints from Galileo Magnetometer Observations , 2000 .

[93]  Thomas J. Owens,et al.  The TauP Toolkit: Flexible Seismic Travel-Time and Raypath Utilities , 1999 .

[94]  R. Powell,et al.  Mixing properties and activity-composition and relationships of chlorites in the system MgO-FeO-Al 2 O 3 -SiO 2 -H 2 O , 1998 .

[95]  Roger Powell,et al.  An internally consistent thermodynamic data set for phases of petrological interest , 1998 .

[96]  J. D. Anderson,et al.  Gravitational constraints on the internal structure of Ganymede , 1996, Nature.

[97]  V. Solomatov,et al.  Scaling of temperature‐ and stress‐dependent viscosity convection , 1995 .

[98]  P. Glover,et al.  Electrical conductivity of the continental crust , 1994 .

[99]  V. F. Petrenko,et al.  The effect of static electric fields on protonic conductivity of ice single crystals , 1992 .

[100]  Robert A. Jacobson,et al.  The masses of Uranus and its major satellites from Voyager tracking data and earth-based Uranian satellite data , 1992 .

[101]  G. E. Wood,et al.  Voyager Radio Science Observations of Neptune and Triton , 1989, Science.

[102]  D. McKenzie,et al.  The Generation and Compaction of Partially Molten Rock , 1984 .

[103]  D. L. Anderson,et al.  Preliminary reference earth model , 1981 .

[104]  D. O. Staley The Adiabatic Lapse Rate in the Venus Atmosphere , 1970 .

[105]  W. L. Marshall,et al.  Electrical conductances of aqueous sodium chloride solutions from 0 to 800.degree. and at pressures to 4000 bars , 1968 .

[106]  H J Brennen,et al.  A NEW EQUATION OF STATE. , 1929, Proceedings of the National Academy of Sciences of the United States of America.

[107]  S. Hauck,,et al.  STRONG OCEAN FLOORS WITHIN EUROPA , TITAN , AND GANYMEDE LIMIT GEOLOGICAL ACTIVITY THERE ; ENCELADUS LESS , 2019 .

[108]  C. Sotin,et al.  Two-phase convection in Ganymede’s high-pressure ice layer — Implications for its geological evolution , 2018 .

[109]  F. Postberg,et al.  The Geochemistry of Enceladus: Composition and Controls , 2018 .

[110]  N. Rambaux,et al.  Tides on Satellites of Giant Planets , 2013 .

[111]  M. Zolotov,et al.  On the Chemical Composition of Europa's Icy Shell, Ocean, and Underlying Rocks , 2009 .

[112]  R. Powell,et al.  Mixing properties and activity-composition relationships of chlorites in the system MgO-FeO-Al2O3-SiO2-H2O , 2006 .

[113]  S. Licht,et al.  The Fundamental Conductivity and Resistivity of Water , 2005 .

[114]  G. Schubert,et al.  Interior composition, structure and dynamics of the Galilean satellites , 2004 .

[115]  M. Kivelson,et al.  Measurements: A Stronger Case for a Subsurface Ocean at Europa , 2000 .

[116]  E. D. Sloan Physical/chemical properties of gas hydrates and application to world margin stability and climatic change , 1998, Geological Society, London, Special Publications.

[117]  Bruce Fegley,et al.  The Planetary Scientist's Companion , 1998 .

[118]  R. A. Jacobson,et al.  Europa's differentiated internal structure: inferences from four Galileo encounters. , 1997, Science.