Implicit QR for companion-like pencils

A fast implicit QR algorithm for eigenvalue computation of low rank corrections of unitary matrices is adjusted to work with matrix pencils arising from polynomial zerofinding problems . The modified QZ algorithm computes the generalized eigenvalues of certain NxN rank structured matrix pencils using O(N^2) ops and O(N) memory storage. Numerical experiments and comparisons confirm the effectiveness and the stability of the proposed method.

[1]  A. Edelman,et al.  Polynomial roots from companion matrix eigenvalues , 1995 .

[2]  Miroslav Fiedler,et al.  Completing a Matrix When Certain Entries of Its Inverse Are Specified , 1986 .

[3]  David S. Watkins,et al.  Fundamentals of Matrix Computations: Watkins/Fundamentals of Matrix Computations , 2005 .

[4]  Stephen A. Vavasis,et al.  Solving Polynomials with Small Leading Coefficients , 2005, SIAM J. Matrix Anal. Appl..

[5]  L. Trefethen,et al.  Pseudozeros of polynomials and pseudospectra of companion matrices , 1994 .

[6]  H. Kwakernaak,et al.  Recent progress in polynomial methods and Polynomial Toolbox for Matlab version 2.0 , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[7]  V. Arnold ON MATRICES DEPENDING ON PARAMETERS , 1971 .

[8]  Israel Gohberg,et al.  Separable Type Representations of Matrices and Fast Algorithms , 2013 .

[9]  Erik Elmroth,et al.  A Geometric Approach to Perturbation Theory of Matrices and Matrix Pencils. Part I: Versal Deformations , 1997 .

[10]  I. Gohberg,et al.  On a new class of structured matrices , 1999 .

[11]  Paul Van Dooren,et al.  Balancing Regular Matrix Pencils , 2006, SIAM J. Matrix Anal. Appl..

[12]  Israel Gohberg,et al.  On the fast reduction of a quasiseparable matrix to Hessenberg and tridiagonal forms , 2007 .

[13]  Israel Gohberg,et al.  Efficient eigenvalue computation for quasiseparable Hermitian matrices under low rank perturbations , 2008, Numerical Algorithms.

[14]  P. Dooren,et al.  The eigenstructure of an arbitrary polynomial matrix : Computational aspects , 1983 .

[15]  Basil G. Mertzios Leverrier's algorithm for singular systems , 1984 .

[16]  Louis A. Romero,et al.  Roots of Polynomials Expressed in Terms of Orthogonal Polynomials , 2005, SIAM J. Numer. Anal..

[17]  Gene H. Golub,et al.  Matrix computations , 1983 .

[18]  David S. Watkins,et al.  Fundamentals of matrix computations , 1991 .

[19]  Carl de Boor An empty exercise , 1990 .