What we have learned about Mars from SNC meteorites

The SNC meteorites are thought to be igneous martian rocks, based on their young crystallization ages and a close match between the composition of gases implanted in them during shock and the atmosphere of Mars. A related meteorite, ALH84001, may be older and thus may represent ancient martian crust. These petrologically diverse basalts and ultramafic rocks are mostly cumulates, but their parent magmas share geochemical and radiogenic isotopic characteristics that suggest they may have formed by remelting the same mantle source region at different times. Information and inferences about martian geology drawn from these samples include the following: Planetary differentiation occured early at approximately 4.5 GA, probably concurrently with accretion. The martian mantle contains different abundances of moderately volatile and siderophile elements and is more Fe-rich than that of the Earth, which has implications for its mineralogy, density, and origin. The estimated core composition has a S abundance near the threshold value for inner core solidification. The former presence of a core dynamo may be suggested by remanent magnetization in Shergottite-Nakhlite-Chassignite (SNC) meteorites, although these rocks may have been magnetized during shock. The mineralogy of martian surface units, inferred from reflectance spectra, matches that of basaltic shergottites, but SNC lithologies thought to have crystallized in the subsurface are not presently recognized. The rheological properties of martian magmas are more accurately derived form these metorites than from observations of martian flow morphology, although the sampled range of magma compositions islimited. Estimates of planetary water abundance and the amount of outgassed water based on these meteorites are contridictory but overlap estimates based on geological observations and atmospheric measurements. Stable isotope measurements indicate that the martian hydrosphere experienced only limited exchange with the lithosphere, but it is in isotopic equilibrium with the atmosphere and has been since 1.3 Ga. The isotopically heavy atmosphere/hydrosphere composition deduced from these rocks reflects a loss process more severe than current atmospheric evolution models, and the occurence of carbonates in SNC meteorites suggest that they, rather than scapolite or hydrous carbonates, are the major crustal sink for CO2. Weathering products in SNC meteorites support the idea of limited alteration of the lithosphere by small volumes of saline, CO2-bearing water. Atmospheric composition and evolution are further constrained by noble gases in these meteorites, although Xe and Kr isotopes suggest different origins for the atmosphere. Planetary ejection of these rocks has promoted an advance in the understanding of impact physics, which has been accomplished by a model involving spallation during large cratering events. Ejection of all the SNC meteorites (except ALH84001) in one or two events may provide a plausible solution to most constraints imposed by chronology, geochemistry, and cosmic ray exposure, although problems remain with this scenario; ALH84001 may represent older martian crust sampled during a separate impact.

[1]  T. Spohn,et al.  Mantle differentiation and the crustal dichotomy of Mars , 1993 .

[2]  G. Mckay,et al.  Radiometric Ages for the Achondrites Chervony Kut, Governador Valadares and Allan Hills 77005 , 1979 .

[3]  D. L. Anderson Internal constitution of Mars. , 1972 .

[4]  J. Kasting,et al.  Mass fractionation during transonic escape and implications for loss of water from Mars and Venus , 1986 .

[5]  John W. Morgan,et al.  Chemical composition of Mars , 1979 .

[6]  F. Podosek Thermal history of the nakhlites by the40Ar-39Ar method , 1973 .

[7]  H. McSween,et al.  Petrogenesis of the Elephant Moraine A79001 meteorite Multiple magma pulses on the shergottite parent body , 1983 .

[8]  A. Treiman Fall days of the SNC meteorites: Evidence for an SNC meteoroid stream, and a common site of origin , 1992 .

[9]  G. Wasserburg,et al.  Formation ages and evolution of Shergotty and its parent planet from U-Th-Pb systematics , 1986 .

[10]  E. Stolper Trace elements in shergottite meteorites: Implications for the origins of planets , 1979 .

[11]  M. Carr D/H on Mars - Effects of floods, volcanism, impacts, and polar processes , 1990 .

[12]  P. Cattermole Sequence, rheological properties, and effusion rates of volcanic flows at Alba Patera, Mars , 1987 .

[13]  JOSEPH V. Smith,et al.  Petrography and mineralogy of two basalts and olivine‐pyroxene‐spinel fragments in achondrite EETA79001 , 1982 .

[14]  S. Solomon,et al.  Thermal expansion and thermal stress in the Moon and terrestrial planets; clues to early thermal history , 1976 .

[15]  J. Longhi Complex magmatic processes on Mars - Inferences from the SNC meteorites , 1991 .

[16]  L. Nyquist Do oblique impacts produce Martian meteorites , 1983 .

[17]  Stephen M. Clifford,et al.  A model for the hydrologic and climatic behavior of water on Mars , 1993 .

[18]  H. Wänke,et al.  Chemical systematics of the shergotty meteorite and the composition of its parent body (Mars) , 1986 .

[19]  Spectral reflectance of SNC meteorites: Relationships to Martian surface composition , 1987 .

[20]  J. Gooding Chemical weathering on Mars - Thermodynamic stabilities of primary minerals /and their alteration products/ from mafic igneous rocks , 1978 .

[21]  R. Wiens,et al.  Laboratory shock emplacement of noble gases, nitrogen, and carbon dioxide into basalt, and implications for trapped gases in shergottite EETA 79001 , 1988 .

[22]  D. Stöffler,et al.  Shock metamorphism and petrography of the Shergotty achondrite , 1986 .

[23]  A. K. Baird,et al.  On the original igneous source of Martian fines , 1981 .

[24]  A. Dessler,et al.  Detection of infrasonic pulses from thunderclouds , 1977 .

[25]  Carle M. Pieters,et al.  Reflectance Spectra of the Elephant Moraine A79001 Meteorite: Implications for Remote Sensing of Planetary Bodies , 1993 .

[26]  U. Ott,et al.  Are all the ‘martian’ meteorites from Mars? , 1985, Nature.

[27]  W. Boynton,et al.  Chemical evidence for the genesis of the ureilites, the achondrite Chassigny and the nakhlites , 1976 .

[28]  Robert O. Pepin,et al.  The case for a martian origin of the shergottites: nitrogen and noble gases in EETA 79001 , 1984 .

[29]  A. Treiman The parental magma of the Nakhla achondrite: Ultrabasic volcanism on the shergottite parent body , 1986 .

[30]  A. Treiman,et al.  Core formation in the Earth and Shergottite Parent Body (SPB): Chemical evidence from basalts☆ , 1986 .

[31]  N. Gale,et al.  The chronology of the Nakhla achondritic meteorite , 1975 .

[32]  F. Hörz,et al.  Shock‐implanted noble gases: An experimental study with implications for the origin of Martian gases in shergottite meteorites , 1986 .

[33]  Bruce G. Bills,et al.  The moments of inertia of Mars , 1989 .

[34]  T. Bunch,et al.  THE NAKHLITES PART I: PETROGRAPHY AND MINERAL CHEMISTRY , 1975 .

[35]  R. Clayton,et al.  Isotopic Composition of Carbonate in EETA 79001 and its Relation to Parent Body Volatiles , 1988 .

[36]  L. L. Lundberg,et al.  Rare earth elements in minerals of the ALHA77005 shergottite and implications for its parent magma and crystallization history , 1990 .

[37]  G. Mckay,et al.  Chronology and petrogenesis of young achondrites, Shergotty, Zagami, and ALHA77005 - Late magmatism on a geologically active planet , 1982 .

[38]  H. Wänke,et al.  Volatiles on Earth and Mars: A comparison , 1987 .

[39]  James L. Gooding,et al.  Preterrestrial aqueous alteration of the Lafayette (SNC) meteorite , 1993 .

[40]  C. Tuniz,et al.  Beryllium-10 contents of shergottites, nakhlites, and Chassigny , 1986 .

[41]  G. J. Taylor,et al.  Zagami - Product of a two-stage magmatic history. [of shergottite meteorite] , 1991 .

[42]  M. Caffee,et al.  Xenon and other noble gases in shergottites , 1986 .

[43]  J. Laul,et al.  Petrogenesis of the SNC (shergottites, nakhlites, chassignites) meteorites: Implications for their origin from a large dynamic planet, possibly Mars , 1984 .

[44]  A. Vickery Effect of an impact-generated gas cloud on the acceleration of solid ejecta. [meteorites from Mars , 1986 .

[45]  T. Ahrens,et al.  Oblique Impact: A Process for Obtaining Meteorite Samples from Other Planets , 1986, Science.

[46]  C. Pillinger,et al.  Chassigny and the nakhlites: Carbon-bearing components and their relationship to martian environmental conditions , 1992 .

[47]  A. Goresy,et al.  Efremovka E49: A compact type-A CAI containing a partially molten spinel-melilite-diopside xenolith , 1994 .

[48]  A. Treiman AMPHIBOLE AND HERCYNITE SPINEL IN SHERGOTTY AND ZAGAMI: MAGMATIC WATER, DEPTH OF CRYSTALLIZATION, AND METASOMATISM , 1985 .

[49]  M. Toksöz,et al.  Thermal history and evolution of Mars , 1978 .

[50]  U. Ott Noble gases in SNC meteorites: Shergotty, Nakhla, Chassigny , 1988 .

[51]  R. H. Becker,et al.  Nitrogen and light noble gases in Shergotty , 1986 .

[52]  H. Newsom Hydrothermal alteration of impact melt sheets with implications for Mars , 1980 .

[53]  K. Nishiizumi,et al.  Exposure history of shergottites , 1986 .

[54]  R. Wiens,et al.  The case for a Martian origin of the shergottites. II - Trapped and indigenous gas components in EETA 79001 glass , 1986 .

[55]  C. Pillinger,et al.  Organic materials in a martian meteorite , 1989, Nature.

[56]  B. Jakosky Mars volatile evolution: Evidence from stable isotopes , 1991 .

[57]  K. Keil,et al.  Alteration of glass as a possible source of clay minerals on Mars , 1978 .

[58]  H. Melosh Ejection of rock fragments from planetary bodies , 1985 .

[59]  J. S. Eldridge,et al.  Petrogenetic relationship between Allan Hills 77005 and other achondrites , 1979 .

[60]  L. L. Lundberg,et al.  Rare earth element carriers in the Shergotty meteorite and implications for its chronology , 1988 .

[61]  P. N. Shukla,et al.  Cosmogenic effects in shergottites , 1986 .

[62]  H. Wänke,et al.  Sr and Nd isotopic systematics of Shergotty meteorite , 1986 .

[63]  R. Clark,et al.  Hydrous carbonates on Mars?: Evidence from Mariner 6/7 infrared spectrometer and ground-based telescopic spectra , 1994 .

[64]  M. Drake,et al.  Fractionated martian atmosphere in the nakhlites? , 1994, Meteoritics.

[65]  D. Collinson Magnetic properties of Antarctic shergottite meteorites EETA 79001 and ALHA 77005: possible relevance to a Martian magnetic field , 1986 .

[66]  H. McSween SNC meteorites: Clues to Martian petrologic evolution? , 1985 .

[67]  O. Eugster Orthopyroxenite ALH84001 : Ejection from Mars (?) 15 Ma (abstract) , 1994 .

[68]  J. Longhi,et al.  The parent magmas of the SNC meteorites. , 1989 .

[69]  M. Carr The Volcanoes of Mars , 1976 .

[70]  H. Wänke,et al.  Earth and Mars: Water inventories as clues to accretional histories , 1992 .

[71]  R. J. Floran,et al.  A Cumulate Dunite with Hydrous Amphibole-Bearing Melt Inclusions , 1978 .

[72]  Michael J. Gaffey,et al.  Pyroxene spectroscopy revisited - Spectral-compositional correlations and relationship to geothermometry , 1991 .

[73]  R. Clayton,et al.  Oxygen isotopes in shergotty , 1986 .

[74]  Paul H. Johnson,et al.  Noble gas contents of shergottites and implications for the Martian origin of SNC meteorites , 1984 .

[75]  R. Clayton,et al.  Oxygen isotopes in eucrites, shergottites, nakhlites, and chassignites , 1983 .

[76]  Carol R. Stoker,et al.  Thermal emission spectra of Mars (5.4–10.5 μm): Evidence for sulfates, carbonates, and hydrates , 1989 .

[77]  G. Dreibus,et al.  Chemistry of Shergottites and the Shergotty Parent Body (spb): Further Evidence for the Two Component Model of Planet Formation , 1983 .

[78]  G. Wetherill Orbital evolution of impact ejecta from Mars. , 1984 .

[79]  Stephane Erard,et al.  The surface of Syrtis Major - Composition of the volcanic substrate and mixing with altered dust and soil , 1993 .

[80]  S. Sutton,et al.  Petrogenesis of the Zagami meteorite - Inferences from synchrotron X-ray (SXRF) microprobe and electron microprobe analyses of pyroxenes , 1992 .

[81]  H. Melosh,et al.  The Large Crater Origin of SNC Meteorites , 1987, Science.

[82]  J. Head,et al.  The Influence of Gravity on Planetary Volcanic Eruption Rates , 1988 .

[83]  W. M. Kaula The moment of inertia of Mars , 1979 .

[84]  C. A. Wood,et al.  SNC meteorites - Igneous rocks from Mars , 1982 .

[85]  D. Bogard,et al.  40Ar-39Ar age of the Shergotty achondrite and implications for its post-shock thermal history , 1979 .

[86]  A. Treiman The parent magma of the Nakhla (SNC) meteorite, inferred from magmatic inclusions , 1993 .

[87]  Michael H. Carr,et al.  Mars: A water-rich planet? , 1986 .

[88]  M. Grady,et al.  Martian atmospheric carbon dioxide and weathering products in SNC meteorites , 1985 .

[89]  M. Wadhwa,et al.  Trace and minor elements in minerals of nakhlites and Chassigny: Clues to their petrogenesis , 1995 .

[90]  Michael E. Zolensky,et al.  Aqueous alteration of the Nakhla meteorite , 1991 .

[91]  P. Warren Mars regolith versus SNC meteorites: possible evidence for abundant crustal carbonates , 1987 .

[92]  C. McKay,et al.  The Chemical Reactivity of the Martian Soil and Implications for Future Missions , 1994 .

[93]  Harry Y. McSween,et al.  SNC meteorites: Are they Martian rocks? , 1984 .

[94]  JOSEPH V. Smith,et al.  SHERGOTTY METEORITE: MINERALOGY, PETROGRAPHY AND MINOR ELEMENTS , 1979 .

[95]  E. Jagoutz Chronology of SNC meteorites , 1991 .

[96]  Michael E. Zolensky,et al.  Calcium carbonate and sulfate of possible extraterrestrial origin in the EETA 79001 meteorite , 1988 .

[97]  Barry L. Lutz,et al.  Deuterium on Mars: The Abundance of HDO and the Value of D/H , 1988, Science.

[98]  H. Melosh Impact ejection, spallation, and the origin of meteorites , 1984 .

[99]  R. Kahn The evolution of CO2 on Mars , 1985 .

[100]  Robert B. Singer,et al.  High-resolution reflectance spectra of Mars in the 2.3-μm region: evidence for the mineral scapolite , 1990 .

[101]  A. Nier,et al.  Isotopic Composition of Nitrogen: Implications for the Past History of Mars' Atmosphere , 1976, Science.

[102]  D. Mittlefehldt,et al.  ALH84001, a cumulate orthopyroxenite member of the martian meteorite clan , 1994 .

[103]  M. Lindstrom,et al.  Comparison of the LEW88516 and ALHA77005 martian meteorites: Similar but distinct , 1994 .

[104]  Robert O. Pepin,et al.  On the origin and early evolution of terrestrial planet atmospheres and meteoritic volatiles , 1991 .

[105]  R. Reasenberg,et al.  The moment of inertia and isostasy of Mars , 1977 .

[106]  John H. Jones,et al.  Core formation in the shergottite parent body and comparison with the Earth , 1987 .

[107]  G. Schubert,et al.  Magnetism and thermal evolution of the terrestrial planets , 1983 .

[108]  D. Bogard,et al.  Martian Gases in an Antarctic Meteorite? , 1983, Science.

[109]  S. Cisowski Magnetic studies on Shergotty and other SNC meteorites , 1986 .

[110]  C. Pillinger,et al.  The evolution of atmospheric CO2 on Mars: The perspective from carbon isotope measurements , 1990 .

[111]  C. Thurber,et al.  Martian lithospheric thickness from elastic flexure theory , 1978 .

[112]  C. Pillinger,et al.  Carbon, oxygen and nitrogen isotopic compositions of possible martian weathering products in EETA 79001 , 1988 .

[113]  T. Scambos,et al.  An outgassing release factor for nonradiogenic volatiles on Mars , 1990 .

[114]  G. Kullerud,et al.  Lafayette meteorite: petrology and opaque mineralogy , 1976 .

[115]  N. Nakamura,et al.  Origin and evolution of the Nakhla meteorite inferred from the Sm-Nd and U-Pb systematics and REE, Ba, Sr, Rb and K abundances , 1982 .

[116]  K. Keil,et al.  Olivine orientation in the ALHA77005 achondrite , 1981 .

[117]  I. P. Wright,et al.  Record of fluid–rock interactions on Mars from the meteorite ALH84001 , 1994, Nature.

[118]  J. Gooding Soil mineralogy and chemistry on Mars - Possible clues from salts and clays in SNC meteorites , 1992 .

[119]  J. Kasting,et al.  Mass fractionation of noble gases in diffusion-limited hydrodynamic hydrogen escape. , 1990, Icarus.

[120]  John H. Jones A discussion of isotopic systematics and mineral zoning in the shergottites - Evidence for a 180 m.y. igneous crystallization age , 1986 .

[121]  Jeremy Jones Isotopic relationships among the shergottites, the nakhlites and Chassigny , 1989 .

[122]  Bruce G. Bills,et al.  Mars topography harmonics and geophysical implications , 1978 .

[123]  L. Taylor,et al.  Allan Hills 77005: A New Meteorite Type Found in Antarctica , 1979, Science.

[124]  J. Pollack,et al.  Implications of the Gas Compositional Measurements of Pioneer Venus for the Origin of Planetary Atmospheres , 1979, Science.

[125]  Tilman Spohn,et al.  Thermal history of Mars and the sulfur content of its core , 1990 .

[126]  G. Poupeau,et al.  Nuclear tracks, Sm isotopes and neutron capture effects in the Elephant Morraine shergottite , 1986 .

[127]  R. Clayton,et al.  Water in SNC meteorites: evidence for a martian hydrosphere. , 1992, Science.

[128]  G. J. Taylor,et al.  Martian parent craters for the SNC meteorites , 1992 .

[129]  S. Epstein,et al.  Water on Mars: Clues from Deuterium/Hydrogen and Water Contents of Hydrous Phases in SNC Meteorites , 1994, Science.

[130]  B. Jakosky Mars volatile evolution: Implications of the recent measurement of 17O in water from the SNC meteorites , 1993 .

[131]  R. Greeley,et al.  Magma Generation on Mars: Amounts, Rates, and Comparisons with Earth, Moon, and Venus , 1991, Science.

[132]  Klaus Keil,et al.  Geochemical and mineralogical interpretation of the Viking inorganic chemical results , 1977 .

[133]  M. Allen,et al.  HDO in the Martian atmosphere: implications for the abundance of crustal water. , 1988, Icarus.

[134]  H. McSween,et al.  Fe3+ in shocked olivine crystals of the ALHA 77005 meteorite , 1984 .

[135]  J. Gooding,et al.  Martian volatiles in shergottite EETA 79001 - New evidence from oxidized sulfur and sulfur-rich aluminosilicates , 1986 .

[136]  R. Clark,et al.  Mars: New Regional Near-Infrared Spectrophotometry (0.65-2.50 μm) Obtained During the 1980 Apparition. , 1980 .

[137]  Gary A. Glatzmaier,et al.  Mantle dynamics in Mars and Venus: Influence of an immobile lithosphere on three-dimensional mantle convection , 1990 .

[138]  J. Zimbelman Estimates of rheologic properties for flows on the Martian volcano Ascraeus Mons , 1985 .

[139]  L. T. Bryndzia,et al.  STATISTICAL ANALYSIS OF FE3+, TI, AND OH IN KAERSUTITE FROM ALKALIC IGNEOUS ROCKS AND MAFIC MANTLE XENOLITHS , 1992 .

[140]  H. McSween,et al.  Petrogenesis of shergottite meteorites inferred from minor and trace element microdistributions , 1994 .

[141]  C. Pillinger,et al.  Carbon abundance and isotopic studies of Shergotty and other shergottite meteorites , 1986 .

[142]  H. McSween,et al.  Numerical simulation of crystal fractionation in shergottite meteorites , 1982 .

[143]  C. Wood,et al.  SNC meteorites: evidence against an asteroidal origin , 1982 .

[144]  H. Wänke,et al.  Chemical composition and accretion history of terrestrial planets , 1988, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[145]  J. Holloway,et al.  Martian mantle primary melts - An experimental study of iron-rich garnet lherzolite minimum melt composition , 1988 .

[146]  G. Wasserburg,et al.  Evidence for late formation and young metamorphism in the Achondrite Nakhla , 1974 .

[147]  G. Mckay,et al.  Clinopyroxene REE distribution coefficients for shergottites: The REE content of the Shergotty melt☆ , 1986 .

[148]  Marie C. Johnson,et al.  Chassigny petrogenesis: Melt compositions, intensive parameters, and water contents of Martian ( ) magmas , 1991 .

[149]  D. Bogard,et al.  A new 1.3 Aeon-Young achondrite , 1977 .

[150]  H. Wiesmann,et al.  Isotopic Studies of Shergottite Chronology: I. Effect of Shock Metamorphism on the Rb-Sr System , 1987 .

[151]  J. Laul,et al.  Complementary rare earth element patterns in unique achondrites, such as ALHA 77005 and shergottites, and in the earth , 1982 .

[152]  E. Jagoutz Sr and Nd isotopic systematics in ALHA 77005: Age of shock metamorphism in shergottites and magmatic differentiation on Mars , 1989 .

[153]  C. Z. Zhang The Martian mean moment-of-inertia and the size of the Mars' core , 1994 .

[154]  H. McSween,et al.  Petrogenesis of the nakhlite meteorites - Evidence from cumulate mineral zoning , 1992 .

[155]  H. McSween,et al.  Outgassed Water on Mars: Constraints from Melt Inclusions in SNC Meteorites , 1993, Science.

[156]  H. McSween,et al.  Petrology and origin of the shergottite meteorites , 1979 .

[157]  S. Jacobsen,et al.  Using the Meteorite Cratering Record to Study the Ancient Martian and Titan Atmosphere , 1994 .

[158]  B. Wood,et al.  Theoretical prediction of phase relationships in planetary mantles , 1982 .

[159]  K. Keil,et al.  Comparative petrology and origin of Governador Valadares and other nakhlites , 1980 .

[160]  E. Stolper,et al.  Basaltic volcanism: The importance of planet size , 1979 .

[161]  H. McSween,et al.  Petrography, mineral chemistry, and petrogenesis of Antarctic Shergottite LEW88516 , 1993 .