Star Formation in the Orion Nebula Cluster

We study the record of star formation activity within the dense cluster associated with the Orion Nebula. The bolometric luminosity function of 900 visible members is well matched by a simplified theoretical model for cluster formation. This model assumes that stars are produced at a constant rate and distributed according to the field-star initial mass function. Our best-fit age for the system, within this framework, is 2 × 106 yr. To undertake a more detailed analysis, we present a new set of theoretical pre-main-sequence tracks. These cover all masses from 0.1 to 6.0 M☉, and start from a realistic stellar birthline. The tracks end along a zero-age main-sequence that is in excellent agreement with the empirical one. As a further aid to cluster studies, we offer an heuristic procedure for the correction of pre-main-sequence luminosities and ages to account for the effects of unresolved binary companions. The Orion Nebula stars fall neatly between our birthline and zero-age main-sequence in the H-R diagram. All those more massive than about 8 M☉ lie close to the main sequence, as also predicted by theory. After accounting for the finite sensitivity of the underlying observations, we confirm that the population between 0.4 and 6.0 M☉ roughly follows a standard initial mass function. We see no evidence for a turnover at lower masses. We next use our tracks to compile stellar ages, also between 0.4 and 6.0 M☉. Our age histogram reveals that star formation began at a low level some 107 yr ago and has gradually accelerated to the present epoch. The period of most active formation is indeed confined to a few × 106 yr, and has recently ended with gas dispersal from the Trapezium. We argue that the acceleration in stellar births, which extends over a wide range in mass, reflects the gravitational contraction of the parent cloud spawning this cluster.

[1]  C. Lada,et al.  Low-Mass Star Formation and the Initial Mass Function in IC 348 , 1998 .

[2]  E. Martín,et al.  Spectroscopic classification of X-ray selected stars in the ρ Ophiuchi star-forming region and vicinity , 1998 .

[3]  K. M. Merrill,et al.  Circumstellar Disks in the Orion Nebula Cluster , 1998 .

[4]  Andrea Richichi,et al.  Binary Stars in the Orion Trapezium Cluster Core , 1998 .

[5]  J. Bally,et al.  Photoevaporation of Disks and Clumps by Nearby Massive Stars: Application to Disk Destruction in the Orion Nebula , 1998 .

[6]  Zhi-Yun Li Self-similar Collapse of Magnetized Molecular Cloud Cores with Ambipolar Diffusion and the “Magnetic Flux Problem” in Star Formation , 1998 .

[7]  I. Bonnell,et al.  Mass segregation in young stellar clusters , 1998 .

[8]  A. Vidal-Madjar,et al.  Deuterium Observations in the Galaxy , 1998 .

[9]  W. Brandner,et al.  Star Formation Environments and the Distribution of Binary Separations , 1998, astro-ph/9803316.

[10]  M. Pinsonneault,et al.  The Problem of Hipparcos Distances to Open Clusters. I. Constraints from Multicolor Main-Sequence Fitting , 1998, astro-ph/9803233.

[11]  Hirohiko Masunaga,et al.  A Radiation Hydrodynamic Model for Protostellar Collapse. I. The First Collapse , 1998 .

[12]  B. Mason,et al.  ICCD Speckle Observations of Binary Stars. XIX. An Astrometric/Spectroscopic Survey of O Stars , 1998 .

[13]  Philip Massey,et al.  Star Formation in R136: A Cluster of O3 Stars Revealed by Hubble Space Telescope Spectroscopy , 1998 .

[14]  C. O’Dell Observational Properties of the Orion Nebula Proplyds , 1998 .

[15]  L. Hartmann,et al.  Disk Accretion Rates for T Tauri Stars , 1998 .

[16]  R. Mundt,et al.  Spatial and kinematic properties of the forbidden emission line region of T Tauri stars , 1997 .

[17]  J. Tennyson,et al.  The effective temperature and metallicity of CM Draconis , 1997 .

[18]  P. Hauschildt,et al.  MODEL ATMOSPHERES OF VERY LOW MASS STARS AND BROWN DWARFS , 1997 .

[19]  L. Hillenbrand On the Stellar Population and Star-Forming History of the Orion Nebula Cluster , 1997 .

[20]  C. McKee,et al.  Star Formation in Cold, Spherical, Magnetized Molecular Clouds , 1997, astro-ph/9703144.

[21]  D. Padgett,et al.  Hubble Space Telescope WFPC2 Observations of the Binary Fraction among Pre-Main-Sequence Cluster Stars in Orion , 1997 .

[22]  F. Palla,et al.  Post-T Tauri Stars: A False Problem , 1996, astro-ph/9612139.

[23]  Cool Star Empirical Temperature Scales , 1997 .

[24]  Zhanwen Han,et al.  Zero-age main-sequence radii and luminosities as analytic functions of mass and metallicity , 1996 .

[25]  Forrest J. Rogers,et al.  Updated Opal Opacities , 1996 .

[26]  Graham Berriman,et al.  Infrared Spectra of Low-Mass Stars: Toward a Temperature Scale for Red Dwarfs , 1996 .

[27]  Forrest J. Rogers,et al.  Opal equation-of-state tables for astrophysical applications , 1996 .

[28]  S. Basu,et al.  Magnetic braking, ambipolar diffusion, and the formation of cloud cores and protostars. III. Effect of the initial mass-to-flux ratio , 1995 .

[29]  L. Hartmann,et al.  Pre-Main-Sequence Evolution in the Taurus-Auriga Molecular Cloud , 1995 .

[30]  P. Massey,et al.  The Initial Mass Function and Massive Star Evolution in the OB Associations of the Northern Milky Way , 1995 .

[31]  P. Hartigan,et al.  Disk Accretion and Mass Loss from Young Stars , 1995 .

[32]  Gilles Chabrier,et al.  An Equation of State for Low-Mass Stars and Giant Planets , 1995 .

[33]  C. Tout,et al.  Approximate input physics for stellar modelling , 1995, astro-ph/9504025.

[34]  C. Lada,et al.  Near-infrared images of IC 348 and the luminosity functions of young embedded star clusters , 1995 .

[35]  D. Depoy,et al.  A 2.2 micrometer imaging survey of the Orion a molecular cloud , 1995 .

[36]  A. Fletcher,et al.  The luminosity functions of embedded stellar clusters. 1: Method of solution and analytic results , 1994 .

[37]  A. Fletcher,et al.  The luminosity functions of embedded stellar clusters. 2: Numerical results , 1994 .

[38]  John R. Stauffer,et al.  High resolution near-infrared imaging of the trapezium: A stellar census , 1994 .

[39]  S. Strom,et al.  Are wide pre-main-sequence binaries coeval? , 1994 .

[40]  F. Rogers,et al.  The Hyades lithium problem revisited , 1994 .

[41]  Michael W. Werner,et al.  HST photometry of the trapezium cluster , 1994 .

[42]  R. Mathieu Pre-Main-Sequence Binary Stars , 1994 .

[43]  Italo Mazzitelli,et al.  New pre-main-sequence tracks for M less than or equal to 2.5 solar mass as tests of opacities and convecti on model , 1994 .

[44]  Lynne A. Hillenbrand,et al.  NGC 6611: a cluster caught in the act , 1993 .

[45]  G. Gilmore,et al.  The distribution of low-mass stars in the Galactic disc , 1993 .

[46]  F. Palla,et al.  The pre-main-sequence evolution of intermediate-mass stars , 1993 .

[47]  M. Simon,et al.  Multiplicity and the ages of the stars in the Taurus star-forming region , 1993 .

[48]  James Liebert,et al.  M dwarf spectra from 0.6 to 1.5 micron - A spectral sequence, model atmosphere fitting, and the temperature scale , 1993 .

[49]  P. Foster,et al.  Gravitational collapse of an isothermal sphere , 1992 .

[50]  Debra A. Fischer,et al.  Multiplicity among M Dwarfs , 1992 .

[51]  F. Palla,et al.  The evolution of intermediate-mass protostars. II: Influence of the accretion flow , 1992 .

[52]  N. Calvet,et al.  Irradiation of Accretion Disks around Young Objects. I. Near-Infrared CO Bands , 1991 .

[53]  F. Palla,et al.  The evolution of intermediate-mass protostars. I, Basic results , 1991 .

[54]  Forrest J. Rogers,et al.  Opacity tables for Cepheid variables , 1991 .

[55]  I. Mazzitelli,et al.  Stellar Turbulent Convection: A New Model and Applications , 1991 .

[56]  F. Palla,et al.  The birthline for intermediate-mass stars , 1990 .

[57]  S. Beckwith,et al.  A Survey for Circumstellar Disks around Young Stellar Objects , 1990 .

[58]  S. Stahler Luminosity jumps in pre-main-sequence stars , 1989 .

[59]  C. McKee Photoionization-regulated Star Formation and the Structure of Molecular Clouds , 1989 .

[60]  E. Young,et al.  IRAS Observations of the Rho Ophiuchi Infrared Cluster: Spectral Energy Distributions and Luminosity Function , 1989 .

[61]  S. Stahler Deuterium and the stellar birthline , 1988 .

[62]  Werner Däppen,et al.  The equation of state for stellar envelopes. II - Algorithm and selected results , 1988 .

[63]  Donald M. Terndrup,et al.  The Trapezium Cluster of the Orion Nebula , 1986 .

[64]  S. Stahler The birthline for low-mass stars , 1983 .

[65]  H. R. Johnson,et al.  Effect of molecules and grains on Rosseland mean opacities , 1983 .

[66]  D. Clayton Principles of stellar evolution and nucleosynthesis , 1983 .

[67]  R. Taam,et al.  The evolution of protostars. I - Global formulation and results , 1980 .

[68]  David R. Alexander,et al.  Low-Temperature Rosseland Opacities , 1975 .

[69]  B. Zuckerman A Model of the Orion Nebula , 1973 .

[70]  H. Graboske,et al.  Evolution of Low-Mass Stars. V. Minimum Mass for the Deuterium Main Sequence , 1973 .

[71]  R. Larson The Evolution of Spherical Protostars with Masses $0\cdot\,25\,{M}_{\odot}\,\text{TO}\,10\,{M}_{\odot}$ , 1972 .

[72]  P. Bodenheimer Studies in Stellar Evolution.IV. The Influence of Initial Conditions on Pre-Main Calculations , 1966 .

[73]  A. Cameron,et al.  A study of solar evolution , 1965 .

[74]  I. Iben Stellar evolution. i - the approach to the main sequence. , 1965 .

[75]  M. Walker Studies of extremely young clusters. I. NGC 2264. , 1956 .