RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

: High aspect-ratio gold nanostructures sustain Fabry–Perot-like surface plasmon responses from infrared to visible light energies. We show that some resonances can be tuned by means of laser irradiation, where low energy modes stay unperturbed. After laser irradiation, gold nanowires’ tips are transformed into nanoparticles of various sizes joint to gold nanowires, producing high aspect-ratiohalf-dumbbellsanddumbbellsstructures.The plasmonic behaviour of both the nanowires and the newly created nanostructures has been characterised by in-depth monochromated electron energy loss spectroscopy (EELS) developed in a transmission electron microscope (TEM) and state-of-the-art discrete dipole approximation (DDA) calculations. All these analyses serve as experimental proof of the selective tuning (or robustness) of

[1]  L. Liz‐Marzán,et al.  Can Copper Nanostructures Sustain High-Quality Plasmons? , 2020, Nano letters.

[2]  A. Bleloch,et al.  Progress in ultrahigh energy resolution EELS. , 2019, Ultramicroscopy.

[3]  C. Geddes,et al.  Plasmonics , 2018, An Introduction to Metamaterials and Nanophotonics.

[4]  Mathieu Kociak,et al.  Plasmonic quantum size effects in silver nanoparticles are dominated by interfaces and local environments , 2018, Nature Physics.

[5]  Dominik J. Winterauer,et al.  Coaxial nanowires as plasmon-mediated remote nanosensors. , 2018, Nanoscale.

[6]  Saulius Juodkazis,et al.  Light‐Induced Tuning and Reconfiguration of Nanophotonic Structures , 2017 .

[7]  Wei Wang,et al.  Optically controllable nanobreaking of metallic nanowires , 2017 .

[8]  J. L. Hueso,et al.  Titania-coated gold nanorods with expanded photocatalytic response. Enzyme-like glucose oxidation under near-infrared illumination. , 2017, Nanoscale.

[9]  R. Arenal,et al.  Active magnetoplasmonic split-ring/ring nanoantennas. , 2017, Nanoscale.

[10]  J. Arbiol,et al.  Tuning the Plasmonic Response up: Hollow Cuboid Metal Nanostructures , 2016 .

[11]  J. Albert,et al.  Review of plasmonic fiber optic biochemical sensors: improving the limit of detection , 2015, Analytical and Bioanalytical Chemistry.

[12]  M. Arruebo,et al.  Morphological Tunability of the Plasmonic Response: From Hollow Gold Nanoparticles to Gold Nanorings , 2014 .

[13]  R. Álvarez-Puebla,et al.  Synthesis and Optical Properties of Homogeneous Nanoshurikens , 2014 .

[14]  L. Roiban,et al.  Local Plasmonic Studies on Individual Core–Shell Gold–Silver and Pure Gold Nano-Bipyramids , 2014 .

[15]  P. Midgley,et al.  Excitation dependent Fano-like interference effects in plasmonic silver nanorods , 2014 .

[16]  J. Plain,et al.  High-resolution imaging and spectroscopy of multipolar plasmonic resonances in aluminum nanoantennas. , 2014, Nano letters.

[17]  H. Ditlbacher,et al.  Morphing a Plasmonic Nanodisk into a Nanotriangle , 2014, Nano letters.

[18]  Hongxing Xu,et al.  Asymmetric silver "nanocarrot" structures: solution synthesis and their asymmetric plasmonic resonances. , 2013, Journal of the American Chemical Society.

[19]  Qiang Li,et al.  Plasmonic wave propagation in silver nanowires: guiding modes or not? , 2013, Optics express.

[20]  G. Botton,et al.  Plasmonic response of bent silver nanowires for nanophotonic subwavelength waveguiding. , 2013, Physical review letters.

[21]  R. Olmon,et al.  Optical dielectric function of gold , 2012 .

[22]  Hong Wei,et al.  Nanowire-based plasmonic waveguides and devices for integrated nanophotonic circuits , 2012 .

[23]  L. Liz‐Marzán,et al.  Surface plasmon mapping of dumbbell-shaped gold nanorods: the effect of silver coating. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[24]  I. Alber,et al.  Visualization of multipolar longitudinal and transversal surface plasmon modes in nanowire dimers. , 2011, ACS nano.

[25]  Martijn Wubs,et al.  Surface plasmon modes of a single silver nanorod: an electron energy loss study. , 2011, Optics express.

[26]  J. Hafner,et al.  Localized surface plasmon resonance sensors. , 2011, Chemical reviews.

[27]  L. Liz‐Marzán,et al.  Spatially resolved measurements of plasmonic eigenstates in complex-shaped, asymmetric nanoparticles: gold nanostars , 2011 .

[28]  Zhenwu Lu,et al.  Plasmonic Nanolithography: A Review , 2011 .

[29]  P. Nordlander,et al.  Chiral surface plasmon polaritons on metallic nanowires. , 2011, Physical review letters.

[30]  Gianluigi A. Botton,et al.  Multipolar plasmonic resonances in silver nanowire antennas imaged with a subnanometer electron probe. , 2011, Nano letters.

[31]  M. Green,et al.  Plasmonics for photovoltaic applications , 2010 .

[32]  V. Shalaev,et al.  The Case for Plasmonics , 2010, Science.

[33]  Yingzhou Huang,et al.  Correlation between incident and emission polarization in nanowire surface plasmon waveguides. , 2010, Nano letters.

[34]  A. Agarwal,et al.  Electron-beam mapping of plasmon resonances in electromagnetically interacting gold nanorods , 2009 .

[35]  O. Stéphan,et al.  Extending the analysis of EELS spectrum-imaging data, from elemental to bond mapping in complex nanostructures. , 2008, Ultramicroscopy.

[36]  Mark L Brongersma,et al.  Spectral properties of plasmonic resonator antennas. , 2008, Optics express.

[37]  L. Liz‐Marzán,et al.  Mapping surface plasmons on a single metallic nanoparticle , 2007 .

[38]  A. Hohenau,et al.  Silver nanowires as surface plasmon resonators. , 2005, Physical review letters.

[39]  Christian Colliex,et al.  Probing surface plasmons on individual nano-objects by near-field electron energy loss spectroscopy , 2005, SPIE Optics + Photonics.

[40]  M. Moskovits Surface‐enhanced Raman spectroscopy: a brief retrospective , 2005 .

[41]  A. Haes,et al.  A unified view of propagating and localized surface plasmon resonance biosensors , 2004, Analytical and bioanalytical chemistry.

[42]  O. Stéphan,et al.  Plasmons in layered nanospheres and nanotubes investigated by spatially resolved electron energy-loss spectroscopy , 2000 .

[43]  A. Morimoto,et al.  Guiding of a one-dimensional optical beam with nanometer diameter. , 1997, Optics letters.

[44]  Christian Colliex,et al.  Spectrum-image: The next step in EELS digital acquisition and processing , 1989 .

[45]  M. Fleischmann,et al.  Raman spectra of pyridine adsorbed at a silver electrode , 1974 .

[46]  J. C. Ashley,et al.  Dispersion relations for non-radiative surface plasmons on cylinders☆ , 1974 .

[47]  Francesca Peiró,et al.  Low-loss EELS methods , 2019, Advances in Imaging and Electron Physics.

[48]  C. Mirkin,et al.  Coaxial lithography. , 2015, Nature nanotechnology.

[49]  M. Lazzarino,et al.  Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons. , 2010, Nature nanotechnology.

[50]  Mark L. Brongersma,et al.  Plasmonics: Electromagnetic Energy Transfer and Switching in Nanoparticle Chain-Arrays Below the Diffraction Limit , 1999 .