Incremental topological flipping works for regular triangulations
暂无分享,去创建一个
[1] Kurt Mehlhorn,et al. On the Construction of Abstract Voronoi Diagrams , 1990, STACS.
[2] Jean-Daniel Boissonnat,et al. On the Randomized Construction of the Delaunay Tree , 1993, Theor. Comput. Sci..
[3] Herbert Edelsbrunner,et al. Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.
[4] Michael Ian Shamos,et al. Computational geometry: an introduction , 1985 .
[5] P. Gritzmann,et al. Applied geometry and discrete mathematics : the Victor Klee festschrift , 1991 .
[6] M. Teillaud,et al. The space of spheres, a geometric tool to unify duality results on Voronoi diagrams , 1992 .
[7] Raimund Seidel,et al. Constructing higher-dimensional convex hulls at logarithmic cost per face , 1986, STOC '86.
[8] Herbert Edelsbrunner,et al. An acyclicity theorem for cell complexes ind dimension , 1990, Comb..
[9] Kenneth L. Clarkson,et al. Applications of random sampling in computational geometry, II , 1988, SCG '88.
[10] Leonidas J. Guibas,et al. Randomized incremental construction of Delaunay and Voronoi diagrams , 1990, Algorithmica.
[11] Herbert Edelsbrunner,et al. An acyclicity theorem for cell complexes in d dimensions , 1989, SCG '89.
[12] Herbert Edelsbrunner,et al. Three-dimensional alpha shapes , 1992, VVS.
[13] Barry Joe,et al. Construction of three-dimensional Delaunay triangulations using local transformations , 1991, Comput. Aided Geom. Des..
[14] AurenhammerFranz. Voronoi diagramsa survey of a fundamental geometric data structure , 1991 .
[15] J. Radon. Mengen konvexer Körper, die einen gemeinsamen Punkt enthalten , 1921 .
[16] S. Croucher,et al. Surveys , 1965, Understanding Communication Research Methods.
[17] Charles L. Lawson,et al. Properties of n-dimensional triangulations , 1986, Comput. Aided Geom. Des..
[18] Herbert Edelsbrunner,et al. Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms , 1988, SCG '88.
[19] Kurt Mehlhorn,et al. On the construction of abstract voronoi diagrams , 1990, STACS.
[20] David G. Kirkpatrick,et al. On the shape of a set of points in the plane , 1983, IEEE Trans. Inf. Theory.
[21] Carl W. Lee,et al. Regular Triangulations of Convex Polvtopes , 1990, Applied Geometry And Discrete Mathematics.
[22] E. Schönhardt,et al. Über die Zerlegung von Dreieckspolyedern in Tetraeder , 1928 .
[23] Franz Aurenhammer,et al. Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.
[24] C. Lawson. Software for C1 Surface Interpolation , 1977 .
[25] Georges Voronoi. Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Premier mémoire. Sur quelques propriétés des formes quadratiques positives parfaites. , 1908 .
[26] Franz Aurenhammer,et al. Power Diagrams: Properties, Algorithms and Applications , 1987, SIAM J. Comput..
[27] B. Joe. Three-dimensional triangulations from local transformations , 1989 .
[28] P. Mani,et al. Shellable Decompositions of Cells and Spheres. , 1971 .
[29] V. T. Rajan,et al. Optimality of the Delaunay triangulation in Rd , 1991, SCG '91.
[30] R. Tichy,et al. Stochastical approximation of convex bodies , 1985 .
[31] Rex A. Dwyer. Higher-dimensional voronoi diagrams in linear expected time , 1991, Discret. Comput. Geom..