Incremental topological flipping works for regular triangulations

A set ofn weighted points in general position in ℝd defines a unique regular triangulation. This paper proves that if the points are added one by one, then flipping in a topological order will succeed in constructing this triangulation. If, in addition, the points are added in a random sequence and the history of the flips is used for locating the next point, then the algorithm takes expected time at mostO(nlogn+n[d/2]). Under the assumption that the points and weights are independently and identically distributed, the expected running time is between proportional to and a factor logn more than the expected size of the regular triangulation. The expectation is over choosing the points and over independent coin-flips performed by the algorithm.

[1]  Kurt Mehlhorn,et al.  On the Construction of Abstract Voronoi Diagrams , 1990, STACS.

[2]  Jean-Daniel Boissonnat,et al.  On the Randomized Construction of the Delaunay Tree , 1993, Theor. Comput. Sci..

[3]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[4]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[5]  P. Gritzmann,et al.  Applied geometry and discrete mathematics : the Victor Klee festschrift , 1991 .

[6]  M. Teillaud,et al.  The space of spheres, a geometric tool to unify duality results on Voronoi diagrams , 1992 .

[7]  Raimund Seidel,et al.  Constructing higher-dimensional convex hulls at logarithmic cost per face , 1986, STOC '86.

[8]  Herbert Edelsbrunner,et al.  An acyclicity theorem for cell complexes ind dimension , 1990, Comb..

[9]  Kenneth L. Clarkson,et al.  Applications of random sampling in computational geometry, II , 1988, SCG '88.

[10]  Leonidas J. Guibas,et al.  Randomized incremental construction of Delaunay and Voronoi diagrams , 1990, Algorithmica.

[11]  Herbert Edelsbrunner,et al.  An acyclicity theorem for cell complexes in d dimensions , 1989, SCG '89.

[12]  Herbert Edelsbrunner,et al.  Three-dimensional alpha shapes , 1992, VVS.

[13]  Barry Joe,et al.  Construction of three-dimensional Delaunay triangulations using local transformations , 1991, Comput. Aided Geom. Des..

[14]  AurenhammerFranz Voronoi diagramsa survey of a fundamental geometric data structure , 1991 .

[15]  J. Radon Mengen konvexer Körper, die einen gemeinsamen Punkt enthalten , 1921 .

[16]  S. Croucher,et al.  Surveys , 1965, Understanding Communication Research Methods.

[17]  Charles L. Lawson,et al.  Properties of n-dimensional triangulations , 1986, Comput. Aided Geom. Des..

[18]  Herbert Edelsbrunner,et al.  Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms , 1988, SCG '88.

[19]  Kurt Mehlhorn,et al.  On the construction of abstract voronoi diagrams , 1990, STACS.

[20]  David G. Kirkpatrick,et al.  On the shape of a set of points in the plane , 1983, IEEE Trans. Inf. Theory.

[21]  Carl W. Lee,et al.  Regular Triangulations of Convex Polvtopes , 1990, Applied Geometry And Discrete Mathematics.

[22]  E. Schönhardt,et al.  Über die Zerlegung von Dreieckspolyedern in Tetraeder , 1928 .

[23]  Franz Aurenhammer,et al.  Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.

[24]  C. Lawson Software for C1 Surface Interpolation , 1977 .

[25]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Premier mémoire. Sur quelques propriétés des formes quadratiques positives parfaites. , 1908 .

[26]  Franz Aurenhammer,et al.  Power Diagrams: Properties, Algorithms and Applications , 1987, SIAM J. Comput..

[27]  B. Joe Three-dimensional triangulations from local transformations , 1989 .

[28]  P. Mani,et al.  Shellable Decompositions of Cells and Spheres. , 1971 .

[29]  V. T. Rajan,et al.  Optimality of the Delaunay triangulation in Rd , 1991, SCG '91.

[30]  R. Tichy,et al.  Stochastical approximation of convex bodies , 1985 .

[31]  Rex A. Dwyer Higher-dimensional voronoi diagrams in linear expected time , 1991, Discret. Comput. Geom..