An implicitization challenge for binary factor analysis

We use tropical geometry to compute the multidegree and Newton polytope of the hypersurface of a statistical model with two hidden and four observed binary random variables, solving an open question stated by Drton, Sturmfels and Sullivant in (Drton et al., 2009, Ch. VI, Problem 7.7). The model is obtained from the undirected graphical model of the complete bipartite graph K2,4 by marginalizing two of the six binary random variables. We present algorithms for computing the Newton polytope of its defining equation by parallel walks along the polytope and its normal fan. In this way we compute vertices of the polytope. Finally, we also compute and certify its facets by studying tangent cones of the polytope at the symmetry classes of vertices. The Newton polytope has 17214912 vertices in 44938 symmetry classes and 70646 facets in 246 symmetry classes.

[1]  J. Landsberg,et al.  On the ideals and singularities of secant varieties of Segre varieties , 2006, math/0601452.

[2]  Douglas Lind,et al.  Non-archimedean amoebas and tropical varieties , 2004, math/0408311.

[3]  Nicolas Le Roux,et al.  Representational Power of Restricted Boltzmann Machines and Deep Belief Networks , 2008, Neural Computation.

[4]  J. M. Landsberg,et al.  On the Ideals of Secant Varieties of Segre Varieties , 2004, Found. Comput. Math..

[5]  Michael Joswig,et al.  polymake: a Framework for Analyzing Convex Polytopes , 2000 .

[6]  Bernd Sturmfels,et al.  The Newton Polytope of the Implicit Equation , 2006, ArXiv.

[7]  Seth Sullivant,et al.  Lectures on Algebraic Statistics , 2008 .

[8]  B. Sturmfels,et al.  ELIMINATION THEORY FOR TROPICAL VARIETIES , 2007, 0704.3471.

[9]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[10]  Alicia Dickenstein,et al.  Tropical Discriminants , 2005, math/0510126.

[11]  Nicholas Eriksson,et al.  Phylogenetic Algebraic Geometry , 2004, math/0407033.

[12]  Brian Gough,et al.  GNU Scientific Library Reference Manual - Third Edition , 2003 .

[13]  Alicia Dickenstein A WORLD OF BINOMIALS , 2008 .

[14]  Bernd Sturmfels,et al.  Tropical Implicitization and Mixed Fiber Polytopes , 2007, ArXiv.

[15]  G. Ziegler,et al.  Polytopes : combinatorics and computation , 2000 .

[16]  Bjarne Stroustrup,et al.  C++ : programovací jazyk : The C++ programming language (Orig.) , 1997 .

[17]  Rekha R. Thomas,et al.  Computing Tropical Varieties , 2008 .

[18]  Mark Lutz,et al.  Learning Python , 1999 .

[19]  A. Jensen Computing Gröbner Fans and Tropical Varieties in Gfan , 2008 .

[20]  B. Sturmfels,et al.  First steps in tropical geometry , 2003, math/0306366.

[21]  L. Pachter,et al.  Algebraic Statistics for Computational Biology: Preface , 2005 .

[22]  D. Eisenbud Commutative Algebra: with a View Toward Algebraic Geometry , 1995 .

[23]  B. Sturmfels,et al.  Geometry of the Restricted Boltzmann Machine , 2009, 0908.4425.