Global Isochrons and Phase Sensitivity of Bursting Neurons

Phase sensitivity analysis is a powerful method for studying (asymptotically periodic) bursting neuron models. One popular way of capturing phase sensitivity is through the computation of isochrons---subsets of the state space that each converge to the same trajectory on the limit cycle. However, the computation of isochrons is notoriously difficult, especially for bursting neuron models. In [W. E. Sherwood and J. Guckenheimer, SIAM J. Appl. Dyn. Syst., 9 (2010), pp. 659--703], the phase sensitivity of the bursting Hindmarsh--Rose model is studied through the use of singular perturbation theory: cross sections of the isochrons of the full system are approximated by those of fast subsystems. In this paper, we complement the previous study, providing a detailed phase sensitivity analysis of the full (three-dimensional) system, including computations of the full (two-dimensional) isochrons. To our knowledge, this is the first such computation for a bursting neuron model. This was made possible thanks to the ...

[1]  J. Guckenheimer,et al.  Isochrons and phaseless sets , 1975, Journal of mathematical biology.

[2]  J. Rogers Chaos , 1876 .

[3]  David Terman,et al.  Mathematical foundations of neuroscience , 2010 .

[4]  J. Byrne,et al.  Phase sensitivity and entrainment in a modeled bursting neuron. , 1997, Biophysical journal.

[5]  Yoshiki Kuramoto,et al.  Chemical Oscillations, Waves, and Turbulence , 1984, Springer Series in Synergetics.

[6]  J. Hindmarsh,et al.  A model of neuronal bursting using three coupled first order differential equations , 1984, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[7]  Gemma Huguet,et al.  A Computational and Geometric Approach to Phase Resetting Curves and Surfaces , 2009, SIAM J. Appl. Dyn. Syst..

[8]  Andrey Shilnikov,et al.  Methods of the Qualitative Theory for the Hindmarsh-rose Model: a Case Study - a Tutorial , 2008, Int. J. Bifurc. Chaos.

[9]  J. Keizer,et al.  Minimal model for membrane oscillations in the pancreatic beta-cell. , 1983, Biophysical journal.

[10]  Rodolphe Sepulchre,et al.  Sensitivity Analysis of Oscillator Models in the Space of Phase-Response Curves: Oscillators As Open Systems , 2012, IEEE Control Systems.

[11]  I. Mezić,et al.  Applied Koopmanism. , 2012, Chaos.

[12]  J. Byrne,et al.  Routes to chaos in a model of a bursting neuron. , 1990, Biophysical journal.

[13]  Jeff Moehlis,et al.  Continuation-based Computation of Global Isochrons , 2010, SIAM J. Appl. Dyn. Syst..

[14]  J. Rubin,et al.  Effects of noise on elliptic bursters , 2004 .

[15]  T. Tél,et al.  Chaotic Dynamics: An Introduction Based on Classical Mechanics , 2006 .

[16]  John Guckenheimer,et al.  Computing Slow Manifolds of Saddle Type , 2012, SIAM J. Appl. Dyn. Syst..

[17]  Rafael de la Llave,et al.  Computation of Limit Cycles and Their Isochrons: Fast Algorithms and Their Convergence , 2013, SIAM J. Appl. Dyn. Syst..

[18]  Rodolphe Sepulchre,et al.  Modeling the Modulation of Neuronal Bursting: A Singularity Theory Approach , 2014, SIAM J. Appl. Dyn. Syst..

[19]  W. Govaerts,et al.  Computation of the Phase Response Curve: A Direct Numerical Approach , 2006, Neural Computation.

[20]  I. Mezić,et al.  On the use of Fourier averages to compute the global isochrons of (quasi)periodic dynamics. , 2012, Chaos.

[21]  Martin Golubitsky,et al.  An unfolding theory approach to bursting in fast–slow systems , 2001 .

[22]  H. Bergman,et al.  Pathological synchronization in Parkinson's disease: networks, models and treatments , 2007, Trends in Neurosciences.

[23]  Andrzej Banaszuk,et al.  Comparison of systems with complex behavior , 2004 .

[24]  James P. Keener,et al.  Mathematical physiology , 1998 .

[25]  G. Ermentrout,et al.  Oscillator death in systems of coupled neural oscillators , 1990 .

[26]  Eugene M. Izhikevich,et al.  Neural excitability, Spiking and bursting , 2000, Int. J. Bifurc. Chaos.

[27]  Eric Shea-Brown,et al.  On the Phase Reduction and Response Dynamics of Neural Oscillator Populations , 2004, Neural Computation.

[28]  J. C. Smith,et al.  Models of respiratory rhythm generation in the pre-Bötzinger complex. I. Bursting pacemaker neurons. , 1999, Journal of neurophysiology.

[29]  Neil Fenichel Persistence and Smoothness of Invariant Manifolds for Flows , 1971 .

[30]  John Guckenheimer,et al.  Dissecting the Phase Response of a Model Bursting Neuron , 2009, SIAM J. Appl. Dyn. Syst..

[31]  A. Winfree The geometry of biological time , 1991 .

[32]  Alla Borisyuk,et al.  UNDERSTANDING NEURONAL DYNAMICS BY GEOMETRICAL DISSECTION OF MINIMAL MODELS , 2005 .

[33]  J. Rinzel,et al.  Dissection of a model for neuronal parabolic bursting , 1987, Journal of mathematical biology.

[34]  C. McIntyre,et al.  Basal ganglia activity patterns in parkinsonism and computational modeling of their downstream effects , 2012, The European journal of neuroscience.

[35]  Stephen Coombes,et al.  Phase-Amplitude Descriptions of Neural Oscillator Models , 2013, Journal of mathematical neuroscience.

[36]  Kestutis Pyragas,et al.  Computation of phase response curves via a direct method adapted to infinitesimal perturbations , 2011 .

[37]  R. Bertram,et al.  Topological and phenomenological classification of bursting oscillations , 1995 .

[38]  Eugene M. Izhikevich,et al.  Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting , 2006 .

[39]  D. Cooper,et al.  The significance of action potential bursting in the brain reward circuit , 2002, Neurochemistry International.

[40]  John Rinzel,et al.  A Formal Classification of Bursting Mechanisms in Excitable Systems , 1987 .

[41]  A. Winfree Patterns of phase compromise in biological cycles , 1974 .

[42]  Eugene M. Izhikevich,et al.  “Subcritical Elliptic Bursting of Bautin Type ” (Izhikevich (2000b)). The following , 2022 .

[43]  Arthur Sherman,et al.  CROSS-CURRENTS BETWEEN BIOLOGY AND MATHEMATICS: THE CODIMENSION OF PSEUDO-PLATEAU BURSTING. , 2012, Discrete and continuous dynamical systems. Series A.

[44]  A. Guillamón,et al.  Phase-Amplitude Response Functions for Transient-State Stimuli , 2013, Journal of mathematical neuroscience.

[45]  Pawel Hitczenko,et al.  Bursting Oscillations Induced by Small Noise , 2007, SIAM J. Appl. Math..