Bayesian Structured Prediction Using Gaussian Processes

This is the accepted manuscript version. The final version is available from IEEE at http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6942234.

[1]  Xiaojin Zhu,et al.  Kernel conditional random fields: representation and clique selection , 2004, ICML.

[2]  Andrew McCallum,et al.  Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data , 2001, ICML.

[3]  Bernhard Schölkopf,et al.  Kernel Dependency Estimation , 2002, NIPS.

[4]  Zoubin Ghahramani,et al.  Conditional Graphical Models , 2007 .

[5]  Cristian Sminchisescu,et al.  Twin Gaussian Processes for Structured Prediction , 2010, International Journal of Computer Vision.

[6]  Jason Weston,et al.  Support vector machines for multi-class pattern recognition , 1999, ESANN.

[7]  Andrew McCallum,et al.  An Introduction to Conditional Random Fields , 2010, Found. Trends Mach. Learn..

[8]  Cordelia Schmid,et al.  Learning realistic human actions from movies , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[9]  Ben Taskar,et al.  Max-Margin Parsing , 2004, EMNLP.

[10]  Thomas Hofmann,et al.  Large Margin Methods for Structured and Interdependent Output Variables , 2005, J. Mach. Learn. Res..

[11]  A. Atiya,et al.  Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2005, IEEE Transactions on Neural Networks.

[12]  Sebastian Nowozin,et al.  Structured Learning and Prediction in Computer Vision , 2011, Found. Trends Comput. Graph. Vis..

[13]  Koby Crammer,et al.  On the Algorithmic Implementation of Multiclass Kernel-based Vector Machines , 2002, J. Mach. Learn. Res..

[14]  Tom Minka,et al.  A family of algorithms for approximate Bayesian inference , 2001 .

[15]  Rae Baxter,et al.  Acknowledgments.-The authors would like to , 1982 .

[16]  Thomas Hofmann,et al.  Gaussian process classification for segmenting and annotating sequences , 2004, ICML.

[17]  Sebastian Nowozin,et al.  Regression Tree Fields — An efficient, non-parametric approach to image labeling problems , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[18]  Michael I. Jordan,et al.  Loopy Belief Propagation for Approximate Inference: An Empirical Study , 1999, UAI.

[19]  Yuan Qi,et al.  Bayesian Conditional Random Fields , 2005, AISTATS.

[20]  C. Rasmussen,et al.  Approximations for Binary Gaussian Process Classification , 2008 .

[21]  Ryan P. Adams,et al.  Elliptical slice sampling , 2009, AISTATS.

[22]  Ben Taskar,et al.  Max-Margin Markov Networks , 2003, NIPS.

[23]  David Barber,et al.  Bayesian Classification With Gaussian Processes , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.