On the use of X-ray computed tomography for determining wood properties: a review 1

In several processes of the forest products industry, an in-depth knowledge of log and board internal features is required and their determination needs fast scanning systems. One of the possible technologies is X-ray computed tomogra- phy (CT) technology. Our paper reviews applications of this technology in wood density measurements, in wood moisture content monitoring, and in locating internal log features that include pith, sapwood, heartwood, knots, and other defects. An- nual growth ring measurements are more problematic to be detected on CT images because of the low spatial resolution of the images used. For log feature identification, our review shows that the feed-forward back-propagation artificial neural net- work is the most efficient CT image processing method. There are also some studies attempting to reconstruct three-dimen- sional log or board images from two-dimensional CT images. Several industrial prototypes have been developed because medical CT scanners were shown to be inappropriate for the wood industry. Because of the high cost of X-ray CT scanner equipment, other types of inexpensive sensors should also be investigated, such as electric resistivity tomography and micro- waves. It also appears that the best approach uses various different sensors, each of them having its own strengths and weak- nesses. Resume : Plusieurs processus de l'industrie des produits forestiers exigent une connaissance approfondie des caracteristiques internes des billes et des planches dont l'acquisition necessite des appareils a balayage rapide. Une des technologies poten- tielles est la tomodensitometrie (TDM). Notre article passe en revue les applications de cette technologie pour mesurer la densite du bois, faire le suivi de la teneur en humidite dans le bois et localiser les caracteristiques internes du bois, telles que la moelle, le bois d'aubier, le bois de cœur, les nœuds et les autres defauts. Il est plus difficile de mesurer les cernes an- nuels sur les images obtenues par TDM a cause de la faible resolution spatiale de ces images. Pour l'identification des ca- racteristiques des billes, notre revue montre que le reseau neuronal artificiel multicouche a retropropagation est la methode la plus efficace pour traiter les images obtenues par TDM. Il y a aussi certaines etudes qui tentent de reconstruire des ima- ges en trois dimensions a partir des images en deux dimensions obtenues par TDM. Plusieurs prototypes industriels ont ete developpes parce qu'il a ete demontre que les tomographes medicaux ne sont pas appropries pour l'industrie du bois. Etant donne le cout eleve des appareils de TDM, d'autres types de capteurs bon marche devraient etre etudies, tels que la tomo- graphie de resistivite electrique et les micro-ondes. Il semble aussi que la meilleure approche consiste a utiliser plusieurs capteurs differents, chacun ayant ses forces et ses faiblesses. (Traduit par la Redaction)

[1]  Fleur Longuetaud,et al.  PithExtract: A robust algorithm for pith detection in computer tomography images of wood - Application to 125 logs from 17 tree species , 2012 .

[2]  S. Fink,et al.  Comparing Norway spruce and silver fir regarding impact of bark wounds , 2012 .

[3]  Franka Brüchert,et al.  Crack Detection in Computer Tomographic Scans of Softwood Tree Discs , 2012 .

[4]  Fleur Longuetaud,et al.  Measuring wood density by means of X-ray computer tomography , 2009, Annals of Forest Science.

[5]  Steffen Rust,et al.  Non-destructive monitoring of early stages of white rot by Trametes versicolor in Fraxinus excelsior , 2011, Annals of Forest Science.

[6]  Gerson R. Rojas IDENTIFICACION DEL CILINDRO NUDOSO EN IMAGENES TC DE TROZAS PODADAS DE PINUS RADIATA UTILIZANDO EL CLASIFICADOR DE MAXIMA VEROSIMILITUD , 2010 .

[7]  Y. Chui,et al.  Identification of Log Characteristics in Computed Tomography Images of Black Spruce (Picea Mariana) Logs by Means of Maximum Likelihood Classifier , 2010 .

[8]  K. Mingard,et al.  Non-destructive measurement of oxide scales. , 2010 .

[9]  Gerson Rojas Espinoza,et al.  IDENTIFICACION DEL CILINDRO NUDOSO EN IMÁGENES TC DE TROZAS PODADAS DE PINUS RADIATA UTILIZANDO REDES NEURONALES ARTIFICIALES , 2010 .

[10]  F. Germain,et al.  A COMPUTER VISION METHOD FOR MOTION DETECTION USING COOPERATIVE KALMAN FILTERS , 2010 .

[11]  J. Johansson,et al.  CT-scanning and modelling of the capillary water uptake in aspen, oak and pine , 2010, European Journal of Wood and Wood Products.

[12]  Timo Ropinski,et al.  Voreen: A Rapid-Prototyping Environment for Ray-Casting-Based Volume Visualizations , 2009, IEEE Computer Graphics and Applications.

[13]  Y. Chui,et al.  Reconstruction of 3D images of internal log characteristics by means of successive 2D log computed tomography images , 2009 .

[14]  B. Uner,et al.  Effect of thinning on density of Pinus nigra tree using X-ray computed tomography. , 2009, Journal of environmental biology.

[15]  Frederick W. Cubbage,et al.  Projecting southern timber supply for multiple products by subregion , 2009 .

[16]  A preliminary study on unbiased volume estimation of resin pockets using stereology to interpret CT-scanned images from one spruce log , 1998, Holz als Roh- und Werkstoff.

[17]  J. Kúdela,et al.  Identification of Reaction Beech Wood by X-ray Computed Tomography , 1996, Holz als Roh- und Werkstoff.

[18]  Zoran Constantinescu,et al.  Adaptive Compression for Remote Visualization , 2009 .

[19]  S. Zhang,et al.  Predicting density of green logs using the computed tomography technique. , 2009 .

[20]  Liu Zhikun,et al.  Distribution characteristics of horizontal density of Chinese fir oriented laminated stick lumber (OLSL). , 2009 .

[21]  G. Espinoza,et al.  IDENTIFICACION DEL CILINDRO NUDOSO EN IMAGENES TC DE TROZAS PODADAS DE PINUS RADIATA UTILIZANDO EL CLASIFICADOR DE MAXIMA VEROSIMILITUD IDENTIFICATION OF DEFECTIVE CORE IN PRUNED PINUS RADIATA LOGS FROM CT IMAGES USING THE MAXIMUM LIKELIHOOD CLASSIFIER , 2009 .

[22]  P. Wiberg,et al.  Model predicted and CT scanned moisture distribution in aPinus radiata board during drying , 2009, Holz als Roh- und Werkstoff.

[23]  T. Seifert,et al.  Combined application of computer tomography and light microscopy for analysis of conductive xylem area in coarse roots of European beech and Norway spruce , 2009, European Journal of Forest Research.

[24]  Brigitte Leblon,et al.  Identification of selected internal wood characteristics in computed tomography images of black spruce: a comparison study , 2009, Journal of Wood Science.

[25]  Y. Chui,et al.  Identification of Log Characteristics in Computed Tomography Images Using Back-Propagation Neural Networks with the Resilient Back-Propagation Training Algorithm and Textural Analysis: Preliminary Results , 2008 .

[26]  Dawei Qi,et al.  Analysis and processing of decayed log CT image based on multifractal theory , 2008 .

[27]  Y. Chui,et al.  Identification of selected log characteristics from computed tomography images of sugar maple logs using maximum likelihood classifier and textural analysis , 2008 .

[28]  Dietmar Meinel,et al.  Fast neutron radiography and tomography of wood , 2008 .

[29]  Modeling Microwave Heating and Moisture Redistribution in Wood , 2008 .

[30]  Franka Brüchert,et al.  Ring width detection for industrial purposes - use of CT and discrete scanning technology on fresh roundwood , 2008 .

[31]  Fleur Longuetaud,et al.  Automatic detection of the heartwood/sapwood boundary within Norway spruce (Picea abies (L.) Karst.) logs by means of CT images , 2007 .

[32]  M. Parker,et al.  X-ray Scanning Machine for Tree-Ring Width and Density Analyses , 2007 .

[33]  Roger E. Hernández,et al.  EXPLORATION OF THE PHYSICAL PROPERTIES OF INTERNAL CHARACTERISTICS OF SUGAR MAPLE LOGS AND RELATIONSHIPS WITH CT IMAGES , 2007 .

[34]  Yaoli Zhang,et al.  Moisture Distribution Changes and Wetwood Behavior in Subalpine Fir Wood during Drying Using High X-Ray Energy Industrial CT Scanner , 2007 .

[35]  Takumi Mitsutani,et al.  Nondestructive tree-ring measurements for Japanese oak and Japanese beech using micro-focus X-ray computed tomography , 2007 .

[36]  B. O. M. Axelsson Lateral cutting force during machining of wood due to momentary disturbances in the wood structure and degree of wear of the cutting tool , 2007, Holz als Roh- und Werkstoff.

[37]  R. Hernández,et al.  Effect of moisture content variation on CT image classification to identify internal defects of sugar maple logs , 2007 .

[38]  S. Grundberg,et al.  Classification of scots pine (Pinus sylvestris) knots in density images from CT scanned logs , 2007, Holz als Roh- und Werkstoff.

[39]  Suchendra M. Bhandarkar,et al.  A novel feature-based tracking approach to the detection, localization, and 3-D reconstruction of internal defects in hardwood logs using computer tomography , 2006, Pattern Analysis and Applications.

[40]  K. Harding,et al.  Resin defect impacts on the value of graded recovery and evaluation of technologies for internal defect detection in slash pine logs. , 2006 .

[41]  Roger E. Hernández,et al.  Identification of internal defect of sugar maple logs from CT images using supervised classification methods , 2006, Holz als Roh- und Werkstoff.

[42]  Fleur Longuetaud,et al.  Picea abies sapwood width: Variations within and between trees , 2006 .

[43]  L. Moberg Predicting knot properties of Picea abies and Pinus sylvestris from generic tree descriptors , 2006 .

[44]  Aaron Taylor Wood density determination in Picea sitchensis using computerised tomography: how do density measurements compare with measurements of pilodyn pin penetration? , 2006 .

[45]  V. Bahyl,et al.  The computer tomography internal wood structure recognition results , 2006 .

[46]  Urban Nordmark,et al.  Predicting lumber volume and grade recovery for Scots pine stems using tree models and sawmill conversion simulation , 2006 .

[47]  K. Sandberg MODELLING WATER SORPTION GRADIENTS IN SPRUCE WOOD USING CT SCANNED DATA , 2006 .

[48]  Jonas Danvind,et al.  A Mass Transport Model for Drying Wood under Isothermal Conditions , 2007 .

[49]  Olle Hagman,et al.  Predicting moisture content and density distribution of Scots pine by microwave scanning of sawn timber II: evaluation of models generated on a pixel level , 2006, Journal of Wood Science.

[50]  T. Seifert,et al.  Volume interpolation of CT images from tree trunks. , 2005, Plant biology.

[51]  J. Nystrom,et al.  Scanning techniques as tools for integration in the wood conversion chain - some industrial applications , 2005 .

[52]  Fleur Longuetaud,et al.  Automatic Detection of Annual Growth Units on Picea abies Logs Using Optical and X-Ray Techniques , 2005 .

[53]  Lei Zheng,et al.  AUTOMATED FEATURE EXTRACTION AND CONTENT-BASED , 2005 .

[54]  F. Longuetaud Detection et analyse non destructives de caractéristiques internes de billons d'Epicéa commun (Picea abies (L. ) Karst. ) par tomographie à rayons X , 2005 .

[55]  Ding Jianwen The Reconstruction of Log CT Images of 3-D Data Using Cubic Natural Spline Function , 2005 .

[56]  Marie-Odile Berger,et al.  Automatic detection of pith on CT images of spruce logs , 2004 .

[57]  Andrés Guesalaga,et al.  Computer reconstruction of pine growth rings using MRI. , 2004, Magnetic resonance imaging.

[58]  Johan Fredriksson,et al.  Automatic grading of sawlogs: A comparison between X-ray scanning, optical three-dimensional scanning and combinations of both methods , 2004 .

[59]  Andreas Schreyer,et al.  A new technique for termite monitoring using computer tomography and endoscopy , 2004 .

[60]  L. O. Lindgren The accuracy of medical CAT-scan images for non-destructive density measurements in small volume elements within solid wood , 1991, Wood Science and Technology.

[61]  L. O. Lindgren Lic. Tech.,et al.  Medical CAT-scanning: X-ray absorption coefficients, CT-numbers and their relation to wood density , 2004, Wood Science and Technology.

[62]  T. Morén,et al.  Using X-ray CT scanning for moisture and displacement measurements in knots and their surroundings , 2004 .

[63]  Erol Sarigul,et al.  Rule-driven defect detection in CT images of hardwood logs , 2003 .

[64]  Per-Erik Danielsson,et al.  Scanning of logs with linear cone-beam tomography , 2003 .

[65]  Alfred Rinnhofer,et al.  Internal log scanning for optimizing breakdown , 2003 .

[66]  Daniel L. Schmoldt,et al.  Lumber value differences from reduced CT spatial resolution and simulated log sawing , 2003 .

[67]  Voichita Bucur,et al.  TECHNIQUES FOR HIGH RESOLUTION IMAGING OF WOOD STRUCTURE , 2004 .

[68]  Alfred Rinnhofer,et al.  Modeling Knot Geometry in Norway Spruce from Industrial CT Images , 2003, SCIA.

[69]  Urban Nordmark,et al.  Models of Knots and Log Geometry of Young Pinus sylvestris Sawlogs Extracted from Computed Tomographic Images , 2003 .

[70]  Voichita Bucur Ionizing Radiation Computed Tomography , 2003 .

[71]  J. Danvind Measuring strain and moisture content in a cross section of drying wood using Digital Speckle Photography and Computerised X-ray Tomography , 2003 .

[72]  P. Kozakiewicz,et al.  Examination of historical wood internal structure using roentgen-ray computed tomography , 2003 .

[73]  François Grondin,et al.  Improving Structural Lumber Quality in a Sample of Picea Mariana Logs Sawn According to the Knots , 2002 .

[74]  Paulo Estevão Cruvinel,et al.  Wood Density Determination by X- and Gamma-Ray Tomography , 2002 .

[75]  A. J. Petutschnigg,et al.  Rotfäuleerkennung bei Fichte in CT-Bildern , 2002, Holz als Roh- und Werkstoff.

[76]  Urban Nordmark,et al.  Knot Identification from CT Images of Young Pinus sylvestris Sawlogs Using Artificial Neural Networks , 2002 .

[77]  C. Aguilera,et al.  VISUALIZACIÓN INTERNA DE NUDOS EN ROLLIZOS DE MADERA DE PINUS RADIATA D. DON UTILIZANDO RAYOS-X , 2002 .

[78]  Anders Kaestner Non-Invasive Multidimensional Imaging Applied on Biological Substances , 2002 .

[79]  C. Ganter,et al.  Xylem water content and wood density in spruce and oak trees detected by high-resolution computed tomography. , 2001, Plant physiology.

[80]  N. Hata,et al.  An integrated visualization system for surgical planning and guidance using image fusion and an open MR , 2001, Journal of magnetic resonance imaging : JMRI.

[81]  J. Oja,et al.  Evaluation of knot parameters measured automatically in CT-images of Norway spruce (Picea abies (L.) Karst.) , 2000, Holz als Roh- und Werkstoff.

[82]  Klaus Mueller,et al.  A practical evaluation of popular volume rendering algorithms , 2000, VVS '00.

[83]  Anders Grönlund,et al.  Validation of a CT-based simulator against a sawmill yield. , 2000 .

[84]  A. Lynn Abbott,et al.  Automated Labeling of Log Features in CT Imagery of Multiple Hardwood Species , 2000 .

[85]  Daniel L. Schmoldt INTERNAL LOG SCANNING: RESEARCH TO REALITY , 2000 .

[86]  Suchendra M. Bhandarkar,et al.  Machine Vision and Applications c ○ Springer-Verlag 1999 CATALOG: a system for detection and rendering of internal log defects using computer tomography , 1997 .

[87]  J. Oja,et al.  The appearance of resin pockets in CT-images of Norway spruce (Picea abies (L.) Karst.) , 1999, Holz als Roh- und Werkstoff.

[88]  L. Moberg Variation in Knot Size of Pinus sylvestris in Two Initial Spacing Trials , 1999 .

[89]  L. Björklund Identifying heartwood-rich stands or stems of Pinus sylvestris by using inventory data , 1999 .

[90]  Stéphane Chemouny,et al.  3D stem reconstruction from CT scan exams. From log external shape to internal structures , 1999 .

[91]  Hans Petersson,et al.  Predicting knot diameter of Pinus sylvestris in Sweden , 1999 .

[92]  Daniel L. Schmoldt,et al.  Nondestructive evaluation of hardwood logs:CT scanning, machine vision and data utilization , 1998 .

[93]  A. Raschi,et al.  Sap-flow velocities and distribution of wet-wood in trunks of healthy and unhealthy Quercus robur, Quercus petraea and Quercus cerris oak trees in Hungary , 1998 .

[94]  Xinli Wang Log Classification by Sinlge X-ray Scans Using Texture Features from Growth Rings , 1998, ACCV.

[95]  S. Guddanti,et al.  Replicating sawmill sawing with TOPSAW using CT images of a full-length hardwood log , 1998 .

[96]  Duc Truong Pham,et al.  Automated grading and defect detection : a review , 1998 .

[97]  W. Simpson,et al.  Specific Gravity, Moisture Content, and Density Relationship for Wood , 1998 .

[98]  Johan Oja A comparison between three different methods of measuring knot parameters in picea abies , 1997 .

[99]  M. Carter Computer graphics: Principles and practice , 1997 .

[100]  A. Lynn Abbott,et al.  A New Approach to Automated Labeling of Internal Features of Hardwood Logs Using CT Images , 1996 .

[101]  A. Raschi,et al.  Comparison of sap flow, cavitation and water status of Quercus petraea and Quercus cerris trees with special reference to computer tomography , 1996 .

[102]  Daniel L. Schmoldt,et al.  A prototype vision system for analyzing CT imagery of hardwood logs , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[103]  Daniel L. Schmoldt,et al.  Automated analysis of CT images for the inspection of hardwood logs , 1996, Proceedings of International Conference on Neural Networks (ICNN'96).

[104]  Daniel L. Schmoldt,et al.  Nondestructive methods for detecting defects in softwood logs , 1996 .

[105]  Daniel L. Schmoldt,et al.  GRASP - A Prototype Interactive Graphic Sawing Program - (Forest Products Journal) , 1996 .

[106]  H. Ridder,et al.  COMPUTERISED TOMOGRAPHIC INVESTIGATIONS OF STREET AND PARK TREES , 1995 .

[107]  Brian Cabral,et al.  Accelerated volume rendering and tomographic reconstruction using texture mapping hardware , 1994, VVS '94.

[108]  M. Levoy,et al.  Fast volume rendering using a shear-warp factorization of the viewing transformation , 1994, SIGGRAPH.

[109]  Martin A. Riedmiller,et al.  A direct adaptive method for faster backpropagation learning: the RPROP algorithm , 1993, IEEE International Conference on Neural Networks.

[110]  Dongping Zhu,et al.  Nondestructive Evaluation of Hardwood Logs Using Automated Interpretation of CT Images , 1993 .

[111]  John R. Davis,et al.  Computed tomographymeasurements on wood , 1992 .

[112]  Anders Grönlund,et al.  Log scanning : extraction of knot geometry in CT-volumes , 1992 .

[113]  David M. Skapura,et al.  Neural networks - algorithms, applications, and programming techniques , 1991, Computation and neural systems series.

[114]  L. O. Lindgren Medical CAT-scanning: X-ray absorption coefficients, CT-numbers and their relation to wood density , 1991 .

[115]  Russell G. Congalton,et al.  A review of assessing the accuracy of classifications of remotely sensed data , 1991 .

[116]  Anders Grönlund,et al.  Methods for reducing data when scanning for internal log defects , 1991 .

[117]  Lee Westover,et al.  Footprint evaluation for volume rendering , 1990, SIGGRAPH.

[118]  Steven K. Feiner,et al.  Computer graphics: principles and practice (2nd ed.) , 1990 .

[119]  C. W. McMillin,et al.  The economic potential of CT scanners for hardwood sawmills , 1990 .

[120]  Charles W. McMillin,et al.  Ultrafast CT scanning of an oak log for internal defects , 1989 .

[121]  Marc Levoy,et al.  Display of surfaces from volume data , 1988, IEEE Computer Graphics and Applications.

[122]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[123]  Brian V. Funt,et al.  Detection of internal log defects by automatic interpretation of computer tomography images , 1987 .

[124]  R. Mull Mass estimates by computed tomography: physical density from CT numbers. , 1984, AJR. American journal of roentgenology.

[125]  Charles W. McMillin,et al.  Locating knots by industrial tomography- A feasibility study , 1984 .

[126]  E C McCullough,et al.  The unreliability of CT numbers as absolute values. , 1982, AJR. American journal of roentgenology.

[127]  G. Hounsfield Computed Medical Imaging , 1980, Science.

[128]  Z H Cho,et al.  Physics of contrast mechanism and averaging effect of linear attenuation coefficients in a computerized transverse axial tomography CTAT) transmission scanner. , 1976, Physics in medicine and biology.

[129]  A Tappert,et al.  NON-DESTRUCTIVE MEASUREMENT OF DENSITY AND MOISTURE CONTENT BY MEANS OF A NUCLEAR METER , 1976 .

[130]  H. Redkey,et al.  A new approach. , 1967, Rehabilitation record.

[131]  A. J. Panshin,et al.  Textbook of Wood Technology , 1964 .

[132]  A. Cormack Representation of a Function by Its Line Integrals, with Some Radiological Applications , 1963 .

[133]  Radiographic and Tomographic Testing of Wood , .