APODIZED PUPIL LYOT CORONAGRAPHS FOR ARBITRARY APERTURES. IV. REDUCED INNER WORKING ANGLE AND INCREASED ROBUSTNESS TO LOW-ORDER ABERRATIONS

The Apodized Pupil Lyot Coronagraph (APLC) is a diffraction suppression system installed in the recently deployed instruments Palomar/P1640, Gemini/GPI, and VLT/SPHERE to allow direct imaging and spectroscopy of circumstellar environments. Using a prolate apodization, the current implementations offer raw contrasts down to $10^{-7}$ at 0.2 arcsec from a star over a wide bandpass (20\%), in the presence of central obstruction and struts, enabling the study of young or massive gaseous planets. Observations of older or lighter companions at smaller separations would require improvements in terms of inner working angle (IWA) and contrast, but the methods originally used for these designs were not able to fully explore the parameter space. We here propose a novel approach to improve the APLC performance. Our method relies on the linear properties of the coronagraphic electric field with the apodization at any wavelength to develop numerical solutions producing coronagraphic star images with high-contrast region in broadband light. We explore the parameter space by considering different aperture geometries, contrast levels, dark-zone sizes, bandpasses, and focal plane mask sizes. We present an application of these solutions to the case of Gemini/GPI with a design delivering a $10^{-8}$ raw contrast at 0.19 arcsec and offering a significantly reduced sensitivity to low-order aberrations compared to the current implementation. Optimal solutions have also been found to reach $10^{-10}$ contrast in broadband light regardless of the telescope aperture shape (in particular the central obstruction size), with effective IWA in the $2-3.5\lambda/D$ range, therefore making the APLC a suitable option for the future exoplanet direct imagers on the ground or in space.

[1]  Robert J. Vanderbei,et al.  Linear Programming: Foundations and Extensions , 1998, Kluwer international series in operations research and management service.

[2]  A. Labeyrie,et al.  The Four-Quadrant Phase-Mask Coronagraph. I. Principle , 2000 .

[3]  C. Marois,et al.  Efficient Speckle Noise Attenuation in Faint Companion Imaging , 2000 .

[4]  A. Sivaramakrishnan,et al.  Ground-based Coronagraphy with High-order Adaptive Optics , 2000, Astronomical Telescopes and Instrumentation.

[5]  W. Traub,et al.  A Coronagraph with a Band-limited Mask for Finding Terrestrial Planets , 2002, astro-ph/0203455.

[6]  H. Ford,et al.  Imaging Spectroscopy for Extrasolar Planet Detection , 2002, astro-ph/0209078.

[7]  C. Aime,et al.  Total coronagraphic extinction of rectangular apertures using linear prolate apodizations , 2002 .

[8]  C. Aime,et al.  Stellar coronagraphy with prolate apodized circular apertures , 2003 .

[9]  R. Vanderbei,et al.  Spiderweb Masks for High-Contrast Imaging , 2003, astro-ph/0303049.

[10]  C. Aime,et al.  Achromatic dual-zone phase mask stellar coronagraph , 2003 .

[11]  Robert J. Vanderbei,et al.  Two-Mirror Apodization for High-Contrast Imaging , 2003 .

[12]  R. Vanderbei,et al.  Extrasolar Planet Finding via Optimal Apodized-Pupil and Shaped-Pupil Coronagraphs , 2003 .

[13]  R. Vanderbei,et al.  Circularly Symmetric Apodization via Star-shaped Masks , 2003, astro-ph/0305045.

[14]  O. Guyon Phase-induced amplitude apodization of telescope pupils for extrasolar terrestrial planet imaging , 2003, astro-ph/0301190.

[15]  Russell B. Makidon,et al.  The Lyot project: toward exoplanet imaging and spectroscopy , 2004, SPIE Astronomical Telescopes + Instrumentation.

[16]  S. Ridgway,et al.  Exoplanet Imaging with a Phase-induced Amplitude Apodization Coronagraph. I. Principle , 2004, astro-ph/0412179.

[17]  D. Mawet,et al.  Annular Groove Phase Mask Coronagraph , 2005 .

[18]  Natalia Yaitskova,et al.  Lyot Coronagraphy on Giant Segmented-Mirror Telescopes , 2005 .

[19]  James P. Lloyd,et al.  Spiders in Lyot Coronagraphs , 2005, astro-ph/0506564.

[20]  R. Soummer Apodized Pupil Lyot Coronagraphs for Arbitrary Telescope Apertures , 2004, astro-ph/0412221.

[21]  Jean-Pierre Véran,et al.  Optimal modal fourier-transform wavefront control. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[22]  S. Ridgway,et al.  Theoretical Limits on Extrasolar Terrestrial Planet Detection with Coronagraphs , 2006, astro-ph/0608506.

[23]  C. Fabron,et al.  SPHERE: a planet finder instrument for the VLT , 2006, Astronomical Telescopes + Instrumentation.

[24]  C. Marois,et al.  A NEW ALGORITHM FOR POINT SPREAD FUNCTION SUBTRACTION IN HIGH-CONTRAST IMAGING: A DEMONSTRATION WITH ANGULAR DIFFERENTIAL IMAGING , 2007 .

[25]  Thierry Fusco,et al.  Calibration and precompensation of noncommon path aberrations for extreme adaptive optics. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[26]  P. Baudoz,et al.  Optimization of apodized pupil Lyot coronagraph for ELTs , 2007 .

[27]  N. Jeremy Kasdin,et al.  Polychromatic compensation of propagated aberrations for high-contrast imaging , 2007 .

[28]  Bruce A. Macintosh,et al.  The Gemini Planet Imager: from science to design to construction , 2008, Astronomical Telescopes + Instrumentation.

[29]  Mark Clampin,et al.  Optical Images of an Exosolar Planet 25 Light-Years from Earth , 2008, Science.

[30]  B. Macintosh,et al.  Direct Imaging of Multiple Planets Orbiting the Star HR 8799 , 2008, Science.

[31]  Kjetil Dohlen,et al.  Exoplanet characterization with long slit spectroscopy , 2008 .

[32]  Ben R. Oppenheimer,et al.  High-Contrast Observations in Optical and Infrared Astronomy , 2009 .

[33]  C. Aime,et al.  APODIZED PUPIL LYOT CORONAGRAPHS FOR ARBITRARY APERTURES. II. THEORETICAL PROPERTIES AND APPLICATION TO EXTREMELY LARGE TELESCOPES , 2009 .

[34]  Frantz Martinache,et al.  The Subaru Coronagraphic Extreme-AO Project , 2009, Optical Engineering + Applications.

[35]  C. Dorrer,et al.  Design, analysis, and testing of a microdot apodizer for the Apodized Pupil Lyot Coronagraph , 2008, 0810.5678.

[36]  Christophe Dorrer,et al.  Calibrating IR optical densities for the Gemini Planet Imager extreme adaptive optics coronagraph apodizers , 2009, Optical Engineering + Applications.

[37]  Olivier Guyon,et al.  The pupil mapping exoplanet coronagraphic observer (PECO) , 2010, Astronomical Telescopes + Instrumentation.

[38]  Randall D. Bartos,et al.  The Gemini Planet Imager calibration wavefront sensor instrument , 2010, Astronomical Telescopes + Instrumentation.

[39]  Alexis Carlotti,et al.  Gemini Planet Imager coronagraph testbed results , 2010, Astronomical Telescopes + Instrumentation.

[40]  Frantz Martinache,et al.  The Subaru coronagraphic extreme AO (SCExAO) system: wavefront control and detection of exoplanets with coherent light modulation in the focal plane , 2010, Astronomical Telescopes + Instrumentation.

[41]  B. Macintosh,et al.  Images of a fourth planet orbiting HR 8799 , 2010, Nature.

[42]  Jr.,et al.  A New High Contrast Imaging Program at Palomar Observatory , 2010, 1012.0008.

[43]  R. Soummer,et al.  HIGH PERFORMANCE PIAA CORONAGRAPHY WITH COMPLEX AMPLITUDE FOCAL PLANE MASKS , 2010 .

[44]  Olivier Guyon,et al.  ACCESS: a concept study for the direct imaging and spectroscopy of exoplanetary systems , 2010, Astronomical Telescopes + Instrumentation.

[45]  Mitchell Troy,et al.  Advanced static speckle calibration for exoplanet imaging , 2010, Astronomical Telescopes + Instrumentation.

[46]  Laurent Pueyo,et al.  ORBITAL MOTION OF HR 8799 b, c, d USING HUBBLE SPACE TELESCOPE DATA FROM 1998: CONSTRAINTS ON INCLINATION, ECCENTRICITY, AND STABILITY , 2011 .

[47]  John E. Krist,et al.  Assessing the performance limits of internal coronagraphs through end-to-end modeling: a NASA TDEM study , 2011, Optical Engineering + Applications.

[48]  P. Baudoz,et al.  Multi-stage four-quadrant phase mask: achromatic coronagraph for space-based and ground-based telescopes , 2011, 1104.2903.

[49]  Laurent Pueyo,et al.  Propagation of aberrations through phase-induced amplitude apodization coronagraph. , 2011, Journal of the Optical Society of America. A, Optics, image science, and vision.

[50]  Gene Serabyn,et al.  Phase-shifting Zernike interferometer wavefront sensor , 2011, Optical Engineering + Applications.

[51]  Michael J. Ireland,et al.  OBSERVATIONAL CONSTRAINTS ON COMPANIONS INSIDE OF 10 AU IN THE HR 8799 PLANETARY SYSTEM , 2011 .

[52]  R. Soummer,et al.  APODIZED PUPIL LYOT CORONAGRAPHS FOR ARBITRARY APERTURES. III. QUASI-ACHROMATIC SOLUTIONS , 2011 .

[53]  K. Dohlen,et al.  Improved achromatization of phase mask coronagraphs using colored apodization , 2011, 1111.3194.

[54]  Olivier Guyon,et al.  Review of small-angle coronagraphic techniques in the wake of ground-based second-generation adaptive optics systems , 2012, Other Conferences.

[55]  Adam Amara,et al.  PYNPOINT: An image processing package for finding exoplanets , 2012, 1207.6637.

[56]  Jennifer E. Roberts,et al.  APPLICATION OF A DAMPED LOCALLY OPTIMIZED COMBINATION OF IMAGES METHOD TO THE SPECTRAL CHARACTERIZATION OF FAINT COMPANIONS USING AN INTEGRAL FIELD SPECTROGRAPH , 2011, 1111.6102.

[57]  R. Soummer,et al.  DETECTION AND CHARACTERIZATION OF EXOPLANETS AND DISKS USING PROJECTIONS ON KARHUNEN–LOÈVE EIGENIMAGES , 2012, 1207.4197.

[58]  Gautam Vasisht,et al.  THE κ ANDROMEDAE SYSTEM: NEW CONSTRAINTS ON THE COMPANION MASS, SYSTEM AGE, AND FURTHER MULTIPLICITY , 2013, 1309.3372.

[59]  SPICES a small space coronagraph to characterize giant and telluric planets in reflected light , 2013 .

[60]  ERRATUM: “ATMOSPHERIC RETRIEVAL ANALYSIS OF THE DIRECTLY IMAGED EXOPLANET HR 8799b” (2013, ApJ, 778, 97) , 2013 .

[61]  Bruce A. Macintosh,et al.  Detection of Carbon Monoxide and Water Absorption Lines in an Exoplanet Atmosphere , 2013, Science.

[62]  T. Fusco,et al.  Calibration of quasi-static aberrations in exoplanet direct-imaging instruments with a Zernike phase-mask sensor , 2013, 1305.5143.

[63]  Mark Clampin,et al.  STIS CORONAGRAPHIC IMAGING OF FOMALHAUT: MAIN BELT STRUCTURE AND THE ORBIT OF FOMALHAUT b , 2013, 1305.2222.

[64]  L. Pueyo,et al.  HIGH-CONTRAST IMAGING WITH AN ARBITRARY APERTURE: ACTIVE COMPENSATION OF APERTURE DISCONTINUITIES , 2012, 1211.6112.

[65]  Dwight Moody,et al.  Complex apodized Lyot coronagraph for exoplanet imaging with partially obscured telescope apertures , 2013, Optics & Photonics - Optical Engineering + Applications.

[66]  Alexis Carlotti,et al.  Apodized phase mask coronagraphs for arbitrary apertures , 2013 .

[67]  Alexis Carlotti,et al.  High-contrast imager for complex aperture telescopes (HiCAT): 1. testbed design , 2013, Optics & Photonics - Optical Engineering + Applications.

[68]  Vanessa P. Bailey,et al.  Erratum: "Discovery of a Probable 4-5 Jupiter-mass Exoplanet to HD 95086 by Direct-imaging" (2013, ApJL, 772, L15) , 2013 .

[69]  Jr.,et al.  RECONNAISSANCE OF THE HR 8799 EXOSOLAR SYSTEM. I. NEAR-INFRARED SPECTROSCOPY , 2013, 1303.2627.

[70]  E. Cady,et al.  HIGH PERFORMANCE LYOT AND PIAA CORONAGRAPHY FOR ARBITRARILY SHAPED TELESCOPE APERTURES , 2013, 1305.6686.

[71]  Julien H. Girard,et al.  A COMBINED VERY LARGE TELESCOPE AND GEMINI STUDY OF THE ATMOSPHERE OF THE DIRECTLY IMAGED PLANET, β PICTORIS b , 2013, 1306.0610.

[72]  D. Mawet,et al.  RING-APODIZED VORTEX CORONAGRAPHS FOR OBSCURED TELESCOPES. I. TRANSMISSIVE RING APODIZERS , 2013, 1309.3328.

[73]  Julien H. Girard,et al.  CONFIRMATION OF THE PLANET AROUND HD 95086 BY DIRECT IMAGING , 2013, 1310.7483.

[74]  C. A. Grady,et al.  DIRECT IMAGING OF A COLD JOVIAN EXOPLANET IN ORBIT AROUND THE SUN-LIKE STAR GJ 504 , 2013, 1307.2886.

[75]  Anthony Boccaletti,et al.  Near-Infrared Detection and Characterization of the Exoplanet HD 95086 b with the Gemini Planet Imager , 2014, 1404.4635.

[76]  Bernard Muschielok,et al.  The 4MOST instrument concept overview , 2014, Astronomical Telescopes and Instrumentation.

[77]  Andrew Serio,et al.  On-sky vibration environment for the Gemini Planet Imager and mitigation effort , 2014, Astronomical Telescopes and Instrumentation.

[78]  Timothy D. Brandt,et al.  Characterization of the gaseous companion κ Andromedae b - New Keck and LBTI high-contrast observations , 2013, 1308.3859.

[79]  Andrew W. Serio,et al.  First light of the Gemini Planet Imager , 2014, Proceedings of the National Academy of Sciences.

[80]  Emmanuel Hugot,et al.  High-contrast Imager for Complex Aperture Telescopes (HICAT): II. Design overview and first light results , 2014, Astronomical Telescopes and Instrumentation.