Magnetic properties, microstructure, composition, and morphology of greigite nanocrystals in magnetotactic bacteria from electron holography and tomography

Abstract Magnetotactic bacteria comprise several aquatic species that orient and migrate along geomagnetic field lines. This behavior is based on the presence of intracellular ferrimagnetic grains of the minerals magnetite (Fe3O4) or greigite (Fe3S4). Whereas the structural and magnetic properties of magnetite magnetosomes have been studied extensively, the properties of greigite magnetosomes are less well known. Here we present a study of the magnetic microstructures, chemical compositions, and threedimensional morphologies and positions of Fe-sulfide crystals in air-dried cells of magnetotactic bacteria. Data were obtained using several transmission electron microscopy techniques that include electron holography, energy-filtered imaging, electron tomography, selected-area electron diffraction, and high-resolution imaging. The studied rod-shaped cells typically contain multiple chains of greigite magnetosomes that have random shapes and orientations. Many of the greigite crystals appear to be only weakly magnetic, because the direction of their magnetic induction is almost parallel to the electron beam. Nevertheless, the magnetosomes collectively comprise a permanent magnetic dipole moment that is sufficient for magnetotaxis. One of the cells, which is imaged at the point of dividing, contains multiple chains of both equidimensional Fe-sulfide and elongated Fe-oxide crystals. The equidimensional and elongated crystals have magnetic properties that are consistent with those of greigite and magnetite, respectively. These results can be useful for obtaining a better understanding of the function of magnetotaxis in sulfide-producing cells, and they have implications for the interpretation of the paleomagnetic signals of greigite-bearing sedimentary rocks.

[1]  Damien Faivre,et al.  An acidic protein aligns magnetosomes along a filamentous structure in magnetotactic bacteria , 2006, Nature.

[2]  A. Roberts,et al.  Magnetite dissolution, diachronous greigite formation, and secondary magnetizations from pyrite oxidation: Unravelling complex magnetizations in Neogene marine sediments from New Zealand , 2006 .

[3]  Grant J. Jensen,et al.  Magnetosomes Are Cell Membrane Invaginations Organized by the Actin-Like Protein MamK , 2006, Science.

[4]  J. Seinfeld,et al.  Electron tomography of nanoparticle clusters: Implications for atmospheric lifetimes and radiative forcing of soot , 2005 .

[5]  D. Schüler,et al.  A Hypervariable 130-Kilobase Genomic Region of Magnetospirillum gryphiswaldense Comprises a Magnetosome Island Which Undergoes Frequent Rearrangements during Stationary Growth , 2005, Journal of bacteriology.

[6]  Yongxin Pan,et al.  Rock magnetic properties of uncultured magnetotactic bacteria , 2005 .

[7]  P. Linford,et al.  Dating environmental change using magnetic bacteria in archaeological soils from the upper Thames Valley, UK , 2005 .

[8]  Y. Qian,et al.  Selective fabrication of metastable greigite (Fe3S4) nanocrystallites and its magnetic properties through a simple solution-based route , 2005 .

[9]  M. Farina,et al.  Multicellular life cycle of magnetotactic prokaryotes. , 2004, FEMS microbiology letters.

[10]  R. Frankel,et al.  Spatiotemporal Distribution of Marine Magnetotactic Bacteria in a Seasonally Stratified Coastal Salt Pond , 2004, Applied and Environmental Microbiology.

[11]  Mohan Sankaran,et al.  Magnetic tests for magnetosome chains in Martian meteorite ALH84001. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[12]  R. Frankel,et al.  Magnetosome formation in prokaryotes , 2004, Nature Reviews Microbiology.

[13]  M. Farina,et al.  Cell organization and ultrastructure of a magnetotactic multicellular organism. , 2004, Journal of structural biology.

[14]  M. Jackson,et al.  More on the low‐temperature magnetism of stable single domain magnetite: Reversibility and non‐stoichiometry , 2004 .

[15]  P A Midgley,et al.  Magnetite morphology and life on Mars , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[16]  M. Farina,et al.  Amorphous mineral phases in magnetotactic multicellular aggregates , 2001, Archives of Microbiology.

[17]  R. Frankel,et al.  Off-axis electron holography of magnetotactic bacteria: magnetic microstructure of strains MV-1 and MS-1 , 2001 .

[18]  R. Frankel,et al.  Magnetic Microstructure of Bacterial Magnetite by Electron Holography , 2001 .

[19]  R. Frankel,et al.  Crystal-size distributions and possible biogenic origin of Fe sulfides , 2001 .

[20]  M. Schoonen,et al.  Magnetic properties of hydrothermally synthesized greigite (Fe3S4)- II. High- and low-temperature characteristics , 2000 .

[21]  M. Farina,et al.  Organization of cells in magnetotactic multicellular aggregates , 1999 .

[22]  Frankel,et al.  Magnetic microstructure of magnetotactic bacteria by electron holography , 1998, Science.

[23]  R. Frankel,et al.  Iron sulfides from magnetotactic bacteria; structure, composition, and phase transitions , 1998 .

[24]  Subir K. Banerjee Rock Magnetism: Fundamentals and Frontiers , 1998 .

[25]  R. Frankel,et al.  Reaction sequence of iron sulfide minerals in bacteria and their use as biomarkers. , 1998, Science.

[26]  R. Frankel,et al.  Magneto-aerotaxis in marine coccoid bacteria. , 1997, Biophysical journal.

[27]  R. Egerton,et al.  Electron Energy-Loss Spectroscopy in the Electron Microscope , 1995, Springer US.

[28]  A. Roberts Magnetic properties of sedimentary greigite (Fe3S4) , 1995 .

[29]  R. Frankel,et al.  Controlled Biomineralization of Magnetite (Fe(inf3)O(inf4)) and Greigite (Fe(inf3)S(inf4)) in a Magnetotactic Bacterium , 1995, Applied and environmental microbiology.

[30]  B. Moskowitz Biomineralization of magnetic minerals , 1995 .

[31]  Roger Proksch,et al.  Magnetic force microscopy of the submicron magnetic assembly in a magnetotactic bacterium , 1995 .

[32]  J. Fassbinder,et al.  Evidence of biogenic greigite (ferrimagnetic Fe3S4) in soil , 1994 .

[33]  R. Frankel,et al.  Rock magnetic criteria for the detection of biogenic magnetite , 1993 .

[34]  R. Frankel,et al.  Fe304 and Fe3S4 in a bacterium , 1993, Nature.

[35]  J. Kirschvink,et al.  Magnetic domain state and coercivity predictions for biogenic greigite (Fe3S4): A comparison of theory with magnetosome observations , 1992 .

[36]  V. Hoffmann Greigite (Fe3S4): magnetic properties and first domain observations , 1992 .

[37]  Joseph L. Kirschvink,et al.  Alteration of the Magnetic Properties of Aquaspirillum magnetotacticum by a Pulse Magnetization Technique , 1991, Applied and environmental microbiology.

[38]  Kazuhiro Tanaka Several new substrates for Desulfovibrio vulgaris strain Marburg and a spontaneous mutant from it , 1990, Archives of Microbiology.

[39]  R. B. Frankel,et al.  Controlled biosynthesis of greigite (Fe3S4) in magnetotactic bacteria , 1990, Naturwissenschaften.

[40]  R. Blakemore,et al.  Intercellular structure in a many-celled magnetotactic prokaryote , 1990, Archives of Microbiology.

[41]  Roy Thompson,et al.  A stable chemical remanence in Holocene sediments , 1990 .

[42]  Marcos Farina,et al.  Magnetic iron-sulphur crystals from a magnetotactic microorganism , 1990, Nature.

[43]  Joseph L. Kirschvink,et al.  Magnetofossil dissolution in a palaeomagnetically unstable deep-sea sediment , 1989, Nature.

[44]  R. Harrison,et al.  Electron holography of nanostructured materials , 2007 .

[45]  P. Buseck,et al.  Magnetic induction mapping of magnetite chains in magnetotactic bacteria at room temperature and close to the Verwey transition using electron holography , 2005 .

[46]  M. Dekkers,et al.  Selected room temperature magnetic parameters as a function of mineralogy, concentration and grain size , 2003 .

[47]  Brian F. G. Johnson,et al.  Z-Contrast tomography: a technique inthree-dimensional nanostructural analysis based on Rutherfordscattering , 2001 .

[48]  M. Kakihana,et al.  Materials Research Society Symposium - Proceedings , 2000 .

[49]  Stephen Mann,et al.  Controlled biomineralization of magnetite (Fe3O4) and greigite (Fe3S4) in a magnetotactic bacterium , 1995 .

[50]  Stephen Mann,et al.  Biomineralization of Iron Sulfides in Magnetotactic Bacteria from Sulfidic Environments , 1991 .

[51]  R. Frankel,et al.  Structure, Morphology and Growth of Biogenic Greigite (Fe 3 S 4 ) , 1990 .

[52]  R. Frankel,et al.  Biomineralization of ferrimagnetic greigite (Fe3S4) and iron pyrite (FeS2) in a magnetotactic bacterium , 1990, Nature.

[53]  R. Frankel,et al.  Magnetic guidance of organisms. , 1984, Annual review of biophysics and bioengineering.