An optimal stopping problem with a reward constraint

This article studies an optimal stopping problem with an endogenous constraint on the set of admissible stopping times. The constraint stipulates that continuation is permitted, at any given date t, only if the endogenous reward achieved exceeds a prespecified threshold. Characterizations of the value function and the optimal stopping time are presented. An application to the pricing of corporate claims, when the capital structure of the firm includes equity-trigger debt, is carried out.

[1]  W. Powers Report of Investigation by the Special Investigative Committee of the Board of Directors of Enron Co , 2002 .

[2]  Ioannis Karatzas,et al.  Brownian Motion and Stochastic Calculus , 1987 .

[3]  Mihai Sîrbu,et al.  A Two-Person Game for Pricing Convertible Bonds , 2006, SIAM J. Control. Optim..

[4]  R. C. Merton,et al.  On the Pricing of Corporate Debt: The Risk Structure of Interest Rates , 1974, World Scientific Reference on Contingent Claims Analysis in Corporate Finance.

[5]  P. Moerbeke On optimal stopping and free boundary problems , 1973, Advances in Applied Probability.

[6]  A. Bensoussan On the theory of option pricing , 1984, Acta Applicandae Mathematicae.

[7]  Stéphane Villeneuve,et al.  On Threshold Strategies and the Smooth-Fit Principle for Optimal Stopping Problems , 2007, Journal of Applied Probability.

[8]  H. Leland. Corporate Debt Value, Bond Covenants, and Optimal Capital Structure , 1994, World Scientific Reference on Contingent Claims Analysis in Corporate Finance.

[9]  Alʹbert Nikolaevich Shiri︠a︡ev,et al.  Optimal Stopping and Free-Boundary Problems , 2006 .

[10]  S. Shreve,et al.  Methods of Mathematical Finance , 2010 .

[11]  Alex W. H. Chan Merton, Robert C. , 2010 .

[12]  I. Karatzas On the pricing of American options , 1988 .

[13]  David Heath,et al.  Coherent multiperiod risk adjusted values and Bellman’s principle , 2007, Ann. Oper. Res..

[14]  A. Mello,et al.  Should corporate debt include a rating trigger , 2006 .

[15]  F. Black,et al.  VALUING CORPORATE SECURITIES: SOME EFFECTS OF BOND INDENTURE PROVISIONS , 1976 .

[16]  R. McDonald,et al.  The Value of Waiting to Invest , 1982 .

[17]  Giacomo Scandolo,et al.  Conditional and dynamic convex risk measures , 2005, Finance Stochastics.

[18]  F. Riedel Optimal Stopping With Multiple Priors , 2009 .

[19]  Savas Dayanik,et al.  On the optimal stopping problem for one-dimensional diffusions , 2003 .

[20]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[21]  Yuri Kifer,et al.  Game options , 2000, Finance Stochastics.

[22]  M. Pontier,et al.  Optimal strategies in a risky debt context , 2009 .

[23]  Eduardo S. Schwartz,et al.  Evaluating Natural Resource Investments , 1985 .

[24]  J. Snell Applications of martingale system theorems , 1952 .

[25]  H. Leland.,et al.  Optimal Capital Structure, Endogenous Bankruptcy, and the Term Structure of Credit Spreads , 1996, World Scientific Reference on Contingent Claims Analysis in Corporate Finance.

[26]  E. B. Dynkin,et al.  Markov processes; theorems and problems , 2013 .

[27]  M. Pinsky Markov Processes, Theorems and Problems (Evgenii B. Dynkin and Aleksandr A. Yushkevich) , 1970 .

[28]  Steven E. Shreve,et al.  Stochastic Calculus for Finance : The Binomial Asset Pricing Model , 2007 .

[29]  S. Jacka Optimal Stopping and the American Put , 1991 .