Comparison of chemometric methods in the analysis of pharmaceuticals with hyperspectral Raman imaging

Chemical imaging method of vibrational spectroscopy, which provides both spectral and spatial information, creates a three-dimensional (3D) dataset with a huge amount of data. When the components of the sample are unknown or their reference spectra are not available, the classical least squares (CLS) method cannot be applied to create visualized distribution maps. Raman image datasets can be evaluated even in such cases using multivariate (chemometric) methods for extracting the needed hidden information. The capability of chemometrics-assisted Raman mapping is evaluated through the analysis of pharmaceutical tablets (considered as unknown) with the aim of estimating the pure component spectra based on the collected Raman image. Six chemometric methods, namely, principal component analysis (PCA), maximum autocorrelation factors (MAF), sample–sample 2D correlation spectroscopy (SS2D), self-modeling mixture analysis (SMMA), multivariate curve resolution–alternating least squares (MCR-ALS), and positive matrix factorization (PMF), were compared. SMMA was found to be the best choice to determine the number of components. MCR-ALS and PMF provided the pure component spectra with the highest quality. MCR-ALS was found to be superior to PMF in the estimation of Raman scores (which correspond to the concentrations) and yielded almost the same results as CLS (using the real reference spectra). Thus, the combination of Raman mapping and chemometrics could be successfully used to characterize unknown pharmaceuticals, identify their ingredients, and obtain information about their structures. This may be useful in the struggles against illegal and counterfeit products and also in the field of pharmaceutical industry when contaminants are to be identified. Copyright © 2011 John Wiley & Sons, Ltd.

[1]  E. A. Sylvestre,et al.  Self Modeling Curve Resolution , 1971 .

[2]  Bruce R. Kowalski,et al.  An extension of the multivariate component-resolution method to three components , 1985 .

[3]  W. Windig,et al.  Interactive self-modeling mixture analysis , 1991 .

[4]  R. Tauler Multivariate curve resolution applied to second order data , 1995 .

[5]  P. Paatero Least squares formulation of robust non-negative factor analysis , 1997 .

[6]  J. J. Andrew,et al.  Rapid Analysis of Raman Image Data Using Two-Way Multivariate Curve Resolution , 1998 .

[7]  P. Gemperline,et al.  Computation of the range of feasible solutions in self-modeling curve resolution algorithms. , 1999, Analytical chemistry.

[8]  Milan Meloun,et al.  Critical comparison of methods predicting the number of components in spectroscopic data , 2000 .

[9]  R. Tauler Calculation of maximum and minimum band boundaries of feasible solutions for species profiles obtained by multivariate curve resolution , 2001 .

[10]  R. Larsen Decomposition using maximum autocorrelation factors , 2002 .

[11]  Cyril Ruckebusch,et al.  Multivariate Curve Resolution Methods in Imaging Spectroscopy: Influence of Extraction Methods and Instrumental Perturbations , 2003, J. Chem. Inf. Comput. Sci..

[12]  Rolf Ergon PLS post‐processing by similarity transformation (PLS + ST): a simple alternative to OPLS , 2005 .

[13]  Róbert Rajkó,et al.  Analytical solution for determining feasible regions of self‐modeling curve resolution (SMCR) method based on computational geometry , 2005 .

[14]  Y. Ozaki,et al.  Two-dimensional correlation spectroscopy as a tool for analyzing vibrational images , 2005 .

[15]  Christophe Collet,et al.  Self-Modelling Curve Resolution of near Infrared Imaging Data , 2008 .

[16]  B. Nadler,et al.  Determining the number of components in a factor model from limited noisy data , 2008 .

[17]  P J Cullen,et al.  Recent applications of Chemical Imaging to pharmaceutical process monitoring and quality control. , 2008, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[18]  C. Gendrin,et al.  Pharmaceutical applications of vibrational chemical imaging and chemometrics: a review. , 2008, Journal of pharmaceutical and biomedical analysis.

[19]  Róbert Rajkó,et al.  Computation of the range (band boundaries) of feasible solutions and measure of the rotational ambiguity in self-modeling/multivariate curve resolution. , 2009, Analytica chimica acta.

[20]  John S. Fletcher,et al.  A comparison of PCA and MAF for ToF‐SIMS image interpretation , 2009, Surface and Interface Analysis.

[21]  Yukihiro Ozaki,et al.  Multivariate data analysis for Raman spectroscopic imaging , 2009 .

[22]  R. Rajkó Studies on the adaptability of different Borgen norms applied in self‐modeling curve resolution (SMCR) method , 2009 .

[23]  Mário A. T. Figueiredo,et al.  Near-infrared hyperspectral unmixing based on a minimum volume criterion for fast and accurate chemometric characterization of counterfeit tablets. , 2010, Analytical chemistry.

[24]  K. Héberger Sum of ranking differences compares methods or models fairly , 2010 .

[25]  G. Marosi,et al.  Raman microscopic evaluation of technology dependent structural differences in tablets containing imipramine model drug. , 2010, Journal of pharmaceutical and biomedical analysis.

[26]  José Manuel Amigo,et al.  Practical issues of hyperspectral imaging analysis of solid dosage forms , 2010, Analytical and bioanalytical chemistry.