Twist-angle dependent proximity induced spin-orbit coupling in graphene/topological insulator heterostructures

The proximity-induced spin-orbit coupling (SOC) in heterostructures of twisted graphene and topological insulators (TIs) Bi$_2$Se$_3$ and Bi$_2$Te$_3$ is investigated from first principles. To build commensurate supercells, we strain graphene and correct thus resulting band offsets by applying a transverse electric field. We then fit the low-energy electronic spectrum to an effective Hamiltonian that comprises orbital and spin-orbit terms. For twist angles 0$^\circ\leq\Theta \lessapprox 20^\circ$, we find the dominant spin-orbit couplings to be of the valley-Zeeman and Rashba types, both a few meV strong. We also observe a sign change in the induced valley-Zeeman SOC at $\Theta\approx 10^\circ$. Additionally, the in-plane spin structure resulting from the Rashba SOC acquires a non-zero radial component, except at $0^\circ$ or $30^\circ$. At $30^\circ$ the graphene Dirac cone interacts directly with the TI surface state. We therefore explore this twist angle in more detail, studying the effects of gating, TI thicknesses, and lateral shifts on the SOC parameters. We find, in agreement with previous results, the emergence of the proximitized Kane-Mele SOC, with a change in sign possible by electrically tuning the Dirac cone within the TI bulk band gap.

[1]  M. Burghard,et al.  Gate-Tunable Helical Currents in Commensurate Topological Insulator/Graphene Heterostructures. , 2022, ACS nano.

[2]  F. D. Juan,et al.  Charge-to-spin conversion in twisted graphene/WSe$_2$ heterostructures , 2022, 2206.09478.

[3]  Aires Ferreira,et al.  Twist angle controlled collinear Edelstein effect in van der Waals heterostructures , 2022, Physical Review B.

[4]  F. de Juan,et al.  Omnidirectional spin-to-charge conversion in graphene/NbSe2 van der Waals heterostructures , 2022, 2D Materials.

[5]  G. Burkard,et al.  Quantum interference tuning of spin-orbit coupling in twisted van der Waals trilayers , 2021, Physical Review Research.

[6]  J. Fabian,et al.  Twist-angle dependent proximity induced spin-orbit coupling in graphene/transition metal dichalcogenide heterostructures , 2021, Physical Review B.

[7]  A. Bid,et al.  Electric-Field-Tunable Valley Zeeman Effect in Bilayer Graphene Heterostructures: Realization of the Spin-Orbit Valve Effect. , 2021, Physical review letters.

[8]  Kenji Watanabe,et al.  Gate-tunable Spin-Orbit-Coupling in Bilayer Graphene-WSe$_2$-heterostructures. , 2020 .

[9]  I. Mertig,et al.  Unconventional Charge–Spin Conversion in Weyl‐Semimetal WTe2 , 2020, Advanced materials.

[10]  E. Kaxiras,et al.  Electronic-structure methods for twisted moiré layers , 2020, Nature Reviews Materials.

[11]  J. Fabian,et al.  Heterostructures of Graphene and Topological Insulators Bi2Se3, Bi2Te3, and Sb2Te3 , 2020, physica status solidi (b).

[12]  J. Fabian,et al.  Quantum Anomalous Hall Effects in Graphene from Proximity-Induced Uniform and Staggered Spin-Orbit and Exchange Coupling. , 2020, Physical review letters.

[13]  J. Fabian,et al.  Single and bilayer graphene on the topological insulator Bi2Se3 : Electronic and spin-orbit properties from first principles , 2019, Physical Review B.

[14]  G. Burkard,et al.  Induced spin-orbit coupling in twisted graphene–transition metal dichalcogenide heterobilayers: Twistronics meets spintronics , 2019, Physical Review B.

[15]  M. Koshino,et al.  Twist-angle dependence of the proximity spin-orbit coupling in graphene on transition-metal dichalcogenides , 2019, Physical Review B.

[16]  T. Taniguchi,et al.  Spin–orbit-driven band inversion in bilayer graphene by the van der Waals proximity effect , 2019, Nature.

[17]  C. Stampfer,et al.  Proximity-induced spin-orbit coupling in graphene/ Bi1.5Sb0.5Te1.7Se1.3 heterostructures , 2018, Physical Review B.

[18]  S. Roche,et al.  Tailoring emergent spin phenomena in Dirac material heterostructures , 2018, Science Advances.

[19]  J. Fabian,et al.  Protected Pseudohelical Edge States in Z_{2}-Trivial Proximitized Graphene. , 2017, Physical review letters.

[20]  S. Roche,et al.  Spin Proximity Effects in Graphene/Topological Insulator Heterostructures. , 2018, Nano letters.

[21]  Kenji Watanabe,et al.  Large spin relaxation anisotropy and valley-Zeeman spin-orbit coupling in WSe2/graphene/h-BN heterostructures , 2017, 1712.05678.

[22]  D. Duong,et al.  van der Waals Layered Materials: Opportunities and Challenges. , 2017, ACS Nano.

[23]  A. Morpurgo,et al.  On-Demand Spin-Orbit Interaction from Which-Layer Tunability in Bilayer Graphene. , 2017, Nano letters.

[24]  B. V. van Wees,et al.  Large Proximity-Induced Spin Lifetime Anisotropy in Transition-Metal Dichalcogenide/Graphene Heterostructures , 2017, Nano letters.

[25]  A. Zalic,et al.  High-density carriers at a strongly coupled interface between graphene and a three-dimensional topological insulator , 2017 .

[26]  J. Fabian,et al.  Proximity Effects in Bilayer Graphene on Monolayer WSe_{2}: Field-Effect Spin Valley Locking, Spin-Orbit Valve, and Spin Transistor. , 2017, Physical review letters.

[27]  Zhuonan Lin,et al.  Competing Gap Opening Mechanisms of Monolayer Graphene and Graphene Nanoribbons on Strong Topological Insulators. , 2017, Nano letters.

[28]  Stephan Roche,et al.  Giant Spin Lifetime Anisotropy in Graphene Induced by Proximity Effects. , 2017, Physical review letters.

[29]  B. Partoens,et al.  Transmission in graphene–topological insulator heterostructures , 2017, 1701.02532.

[30]  J. Fabian,et al.  Copper adatoms on graphene: theory of orbital and spin-orbital effects , 2016, 1610.01798.

[31]  M. Weinert,et al.  Indirect Interlayer Bonding in Graphene-Topological Insulator van der Waals Heterostructure: Giant Spin-Orbit Splitting of the Graphene Dirac States. , 2016, ACS nano.

[32]  J. Hone,et al.  Nanosecond spin relaxation times in single layer graphene spin valves with hexagonal boron nitride tunnel barriers , 2016, 1608.08688.

[33]  F. Bechstedt,et al.  Coincidence Lattices of 2D Crystals: Heterostructure Predictions and Applications , 2016 .

[34]  W. Duan,et al.  Heavy Dirac fermions in a graphene/topological insulator hetero-junction , 2016, 1602.08822.

[35]  Takashi Taniguchi,et al.  Spin Lifetimes Exceeding 12 ns in Graphene Nonlocal Spin Valve Devices. , 2016, Nano letters.

[36]  F. Liu,et al.  Strain engineering of graphene: a review. , 2016, Nanoscale.

[37]  Yongsam Kim,et al.  Proximity Effect Induced Electronic Properties of Graphene on Bi₂Te₂Se. , 2015, ACS nano.

[38]  J. Fabian,et al.  Trivial and inverted Dirac bands and the emergence of quantum spin Hall states in graphene on transition-metal dichalcogenides , 2015, 1510.00166.

[39]  Qian Niu,et al.  Topological phases in two-dimensional materials: a review , 2015, Reports on progress in physics. Physical Society.

[40]  A. Morpurgo,et al.  Strong interface-induced spin–orbit interaction in graphene on WS2 , 2015, Nature Communications.

[41]  J. Fabian,et al.  Graphene on transition-metal dichalcogenides: A platform for proximity spin-orbit physics and optospintronics , 2015, 1506.08954.

[42]  Kenji Watanabe,et al.  Tunneling in graphene–topological insulator hybrid devices , 2015, 1504.08311.

[43]  M. Koshino Interlayer interaction in general incommensurate atomic layers , 2015, 1501.02116.

[44]  G. Eda,et al.  Spin–orbit proximity effect in graphene , 2014, Nature Communications.

[45]  S. Sanvito,et al.  Proximity-induced topological state in graphene , 2014, 1407.4008.

[46]  E. Rossi,et al.  Proximity effect in graphene-topological-insulator heterostructures. , 2013, Physical review letters.

[47]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.

[48]  G. M. Stocks,et al.  Surface and substrate induced effects on thin films of the topological insulators Bi 2 Se 3 and Bi 2 Te 3 , 2013 .

[49]  S. Jhi,et al.  Proximity-induced giant spin-orbit interaction in epitaxial graphene on a topological insulator , 2012, 1206.3608.

[50]  Hui Li,et al.  Epitaxial heterostructures of ultrathin topological insulator nanoplate and graphene. , 2010, Nano letters.

[51]  Q. Xue,et al.  Topological insulator Bi2Se3 thin films grown on double-layer graphene by molecular beam epitaxy , 2010, 1007.0809.

[52]  Jun Ding,et al.  Quantum anomalous Hall effect in graphene from Rashba and exchange effects , 2010, 1005.1672.

[53]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[54]  Y. Son,et al.  Effects of strain on electronic properties of graphene , 2009, 0908.0977.

[55]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[56]  Vincenzo Barone,et al.  Role and effective treatment of dispersive forces in materials: Polyethylene and graphite crystals as test cases , 2009, J. Comput. Chem..

[57]  Xu Du,et al.  Approaching ballistic transport in suspended graphene. , 2008, Nature nanotechnology.

[58]  G. Fudenberg,et al.  Ultrahigh electron mobility in suspended graphene , 2008, 0802.2389.

[59]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[60]  C. Kane,et al.  Z2 topological order and the quantum spin Hall effect. , 2005, Physical review letters.

[61]  C. Kane,et al.  Quantum spin Hall effect in graphene. , 2004, Physical review letters.

[62]  Karsten W. Jacobsen,et al.  An object-oriented scripting interface to a legacy electronic structure code , 2002, Comput. Sci. Eng..

[63]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[64]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[65]  Joseph Callaway,et al.  Inhomogeneous Electron Gas , 1973 .

[66]  Seizo Nakajima The crystal structure of Bi2Te3−xSex , 1963 .