Variance Clustering Improved Dynamic Conditional Correlation MGARCH Estimators

It is well-known that the estimated GARCH dynamics exhibit common patterns. Starting from this fact the Dynamic Conditional Correlation (DCC) model is extended by allowing for a clustering structure of the univariate GARCH parameters. The model can be estimated in two steps, the first devoted to the clustering structure, and the second focusing on dynamic parameters. Differently from the traditional two-step DCC estimation, large system feasibility of the joint estimation of the whole set of model's dynamic parameters is achieved. A new approach to the clustering of GARCH processes is also introduced. Such an approach embeds the asymptotic properties of the univariate quasi-maximum-likelihood GARCH estimators into a Gaussian mixture clustering algorithm. Unlike other GARCH clustering techniques, the proposed method provides a natural estimator of the number of clusters.

[1]  Michael McAleer,et al.  Do We Really Need Both BEKK and DCC? A Tale of Two Multivariate GARCH Models , 2010 .

[2]  Robert F. Engle,et al.  A long-run Pure Variance Common Features model for the common volatilities of the Dow Jones , 2006 .

[3]  Edoardo Otranto,et al.  Clustering heteroskedastic time series by model-based procedures , 2008, Comput. Stat. Data Anal..

[4]  Luc Bauwens,et al.  Bayesian Clustering of Many Garch Models , 2003 .

[5]  Edoardo Otranto,et al.  Identifying financial time series with similar dynamic conditional correlation , 2010, Comput. Stat. Data Anal..

[6]  R. Engle Dynamic Conditional Correlation : A Simple Class of Multivariate GARCH Models , 2000 .

[7]  T. Warren Liao,et al.  Clustering of time series data - a survey , 2005, Pattern Recognit..

[8]  Thomas A. Severini,et al.  Likelihood functions for inference in the presence of a nuisance parameter , 1998 .

[9]  M. Hashem Pesaran,et al.  Modelling Volatilities and Conditional Correlations in Futures Markets with a Multivariate T Distribution , 2007 .

[10]  M. Rothschild,et al.  Asset Pricing with a Factor Arch Covariance Structure: Empirical Estimates for Treasury Bills , 1988 .

[11]  J. Wooldridge Estimation and inference for dependent processes , 1994 .

[12]  Michael McAleer,et al.  GENERALIZED AUTOREGRESSIVE CONDITIONAL CORRELATION , 2008, Econometric Theory.

[13]  Riccardo Colacito,et al.  Testing and Valuing Dynamic Correlations for Asset Allocation , 2005 .

[14]  Christian T. Brownlees,et al.  On the Relation between Firm Characteristics and Volatility Dynamics with an Application to the 2007-2009 Financial Crisis , 2010 .

[15]  Christian M. Hafner,et al.  On the estimation of dynamic conditional correlation models , 2012, Comput. Stat. Data Anal..

[16]  J. Wooldridge,et al.  Quasi-maximum likelihood estimation and inference in dynamic models with time-varying covariances , 1992 .

[17]  R. Engle Dynamic Conditional Correlation , 2002 .

[18]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[19]  Neil Shephard,et al.  Nuisance parameters, composite likelihoods and a panel of GARCH models , 2009 .

[20]  S. Laurent,et al.  On the Forecasting Accuracy of Multivariate GARCH Models , 2010 .

[21]  Akira Hirose,et al.  IEEE Press Series on Computational Intelligence , 2013 .

[22]  P. Franses,et al.  A Generalized Dynamic Conditional Correlation Model: Simulation and Application to Many Assets , 2009 .

[23]  R. Engle,et al.  Asymmetric Dynamics in the Correlations of Global Equity and Bond Returns , 2003, SSRN Electronic Journal.

[24]  Gianni Amisano,et al.  Comparing Density Forecasts via Weighted Likelihood Ratio Tests , 2007 .

[25]  F. Diebold,et al.  Comparing Predictive Accuracy , 1994, Business Cycles.

[26]  Jeroen V.K. Rombouts,et al.  Série Scientifique Scientific Series on Loss Functions and Ranking Forecasting Performances of Multivariate Volatility Models on Loss Functions and Ranking Forecasting Performances of Multivariate Volatility Models , 2022 .

[27]  J. Zakoian,et al.  GARCH Models: Structure, Statistical Inference and Financial Applications , 2010 .

[28]  R. Engle,et al.  Dynamic Equicorrelation , 2011 .

[29]  T. Bollerslev,et al.  Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model , 1990 .

[30]  L. Horváth,et al.  Merits and Drawbacks of Variance Targeting in GARCH Models , 2011 .

[31]  Monica Billio,et al.  A Generalized Dynamic Conditional Correlation Model for Portfolio Risk Evaluation , 2006, Math. Comput. Simul..

[32]  Monica Billio,et al.  Flexible Dynamic Conditional Correlation multivariate GARCH models for asset allocation , 2006 .

[33]  Marc S. Paolella ALRIGHT: Asymmetric LaRge-Scale(I)GARCH with Hetero-Tails , 2015 .

[34]  Kevin Sheppard,et al.  Evaluating Volatility and Correlation Forecasts , 2009 .