A Rational Approximation Scheme for Computing Mittag-Leffler Function with Discrete Elliptic Operator as Input

In this work, we propose a new scheme based on numerical quadrature to calculate the two-parameter Mittag-Leffler function with discrete elliptic operator $$-{\mathcal {L}}_h$$ as input. Except pure mathematical interest from approximation theory, our consideration also arises from solving sub-diffusion equations numerically with time-independent diffusion coefficient. We obtain the scheme by applying Gauss-Legendre quadrature rule for the integral representation of the Mittag-Leffler function. Rigorous error analysis is carried out which shows that the scheme converges exponentially with the increase of quadrature nodes. The computational cost of the algorithm is solving K sparse linear systems with K the number of quadrature nodes. It is worth to point out that the scheme is completely parallel which can save much time if the dimension of $${\mathcal {L}}_h$$ is very large. Some numerical tests are provided to verify the efficiency and robustness of our scheme.

[1]  A. Wiman Über den Fundamentalsatz in der Teorie der FunktionenEa(x) , 1905 .

[2]  I. Moret,et al.  RD-Rational Approximations of the Matrix Exponential , 2004 .

[3]  R. Gorenflo,et al.  Mittag-Leffler Functions, Related Topics and Applications , 2014, Springer Monographs in Mathematics.

[4]  I. Podlubny Fractional differential equations : an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications , 1999 .

[5]  R. Paris Exponential asymptotics of the Mittag–Leffler function , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[6]  Roberto Garrappa,et al.  Computing the Matrix Mittag-Leffler Function with Applications to Fractional Calculus , 2018, Journal of Scientific Computing.

[7]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[8]  Roberto Garrappa,et al.  Generalized exponential time differencing methods for fractional order problems , 2011, Comput. Math. Appl..

[9]  Valeria Simoncini,et al.  Analysis of Projection Methods for Rational Function Approximation to the Matrix Exponential , 2006, SIAM J. Numer. Anal..

[10]  Wong,et al.  Exponential Asymptotics of the Mittag—Leffler Function , 2002 .

[11]  A. Wiman,et al.  Über die Nullstellen der FunktionenEa(x) , 1905 .

[12]  Raytcho D. Lazarov,et al.  Error Estimates for a Semidiscrete Finite Element Method for Fractional Order Parabolic Equations , 2012, SIAM J. Numer. Anal..

[13]  P. Davis Interpolation and approximation , 1965 .

[14]  G. Mittag-Leffler,et al.  Sur la représentation analytique d’une branche uniforme d’une fonction monogène , 1901 .

[15]  J. Boyd Chebyshev & Fourier Spectral Methods , 1989 .

[16]  Satish C. Reddy,et al.  The Accuracy of the Chebyshev Differencing Method for Analytic Functions , 2005, SIAM J. Numer. Anal..

[17]  Zhimin Zhang,et al.  Superconvergence Points of Polynomial Spectral Interpolation , 2012, SIAM J. Numer. Anal..

[18]  R. Hilfer,et al.  NUMERICAL RESULTS FOR THE GENERALIZED MITTAG-LEER FUNCTION , 2005 .

[19]  Hai-Wei Sun,et al.  Shift-Invert Arnoldi Approximation to the Toeplitz Matrix Exponential , 2010, SIAM J. Sci. Comput..

[20]  Roberto Garrappa,et al.  Numerical Evaluation of Two and Three Parameter Mittag-Leffler Functions , 2015, SIAM J. Numer. Anal..

[21]  Roberto Garrappa,et al.  Evaluation of generalized Mittag–Leffler functions on the real line , 2013, Adv. Comput. Math..

[22]  Lidia Aceto,et al.  Rational approximations to fractional powers of self-adjoint positive operators , 2018, Numerische Mathematik.

[23]  Bangti Jin,et al.  Numerical methods for time-fractional evolution equations with nonsmooth data: A concise overview , 2018, Computer Methods in Applied Mechanics and Engineering.

[24]  Li-Lian Wang,et al.  Sharp Error Bounds for Jacobi Expansions and Gegenbauer-Gauss Quadrature of Analytic Functions , 2012, SIAM J. Numer. Anal..

[26]  E. Cheney Introduction to approximation theory , 1966 .

[27]  Igor Moret,et al.  On the Convergence of Krylov Subspace Methods for Matrix Mittag-Leffler Functions , 2011, SIAM J. Numer. Anal..

[28]  Joseph E. Pasciak,et al.  Numerical approximation of fractional powers of elliptic operators , 2013, Math. Comput..

[29]  Rudolf Hilfer,et al.  Numerical Algorithm for Calculating the Generalized Mittag-Leffler Function , 2008, SIAM J. Numer. Anal..

[30]  Valeria Simoncini,et al.  Acceleration Techniques for Approximating the Matrix Exponential Operator , 2008, SIAM J. Matrix Anal. Appl..