A Rational Approximation Scheme for Computing Mittag-Leffler Function with Discrete Elliptic Operator as Input
暂无分享,去创建一个
[1] A. Wiman. Über den Fundamentalsatz in der Teorie der FunktionenEa(x) , 1905 .
[2] I. Moret,et al. RD-Rational Approximations of the Matrix Exponential , 2004 .
[3] R. Gorenflo,et al. Mittag-Leffler Functions, Related Topics and Applications , 2014, Springer Monographs in Mathematics.
[4] I. Podlubny. Fractional differential equations : an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications , 1999 .
[5] R. Paris. Exponential asymptotics of the Mittag–Leffler function , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[6] Roberto Garrappa,et al. Computing the Matrix Mittag-Leffler Function with Applications to Fractional Calculus , 2018, Journal of Scientific Computing.
[7] J. Klafter,et al. The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .
[8] Roberto Garrappa,et al. Generalized exponential time differencing methods for fractional order problems , 2011, Comput. Math. Appl..
[9] Valeria Simoncini,et al. Analysis of Projection Methods for Rational Function Approximation to the Matrix Exponential , 2006, SIAM J. Numer. Anal..
[10] Wong,et al. Exponential Asymptotics of the Mittag—Leffler Function , 2002 .
[11] A. Wiman,et al. Über die Nullstellen der FunktionenEa(x) , 1905 .
[12] Raytcho D. Lazarov,et al. Error Estimates for a Semidiscrete Finite Element Method for Fractional Order Parabolic Equations , 2012, SIAM J. Numer. Anal..
[13] P. Davis. Interpolation and approximation , 1965 .
[14] G. Mittag-Leffler,et al. Sur la représentation analytique d’une branche uniforme d’une fonction monogène , 1901 .
[15] J. Boyd. Chebyshev & Fourier Spectral Methods , 1989 .
[16] Satish C. Reddy,et al. The Accuracy of the Chebyshev Differencing Method for Analytic Functions , 2005, SIAM J. Numer. Anal..
[17] Zhimin Zhang,et al. Superconvergence Points of Polynomial Spectral Interpolation , 2012, SIAM J. Numer. Anal..
[18] R. Hilfer,et al. NUMERICAL RESULTS FOR THE GENERALIZED MITTAG-LEER FUNCTION , 2005 .
[19] Hai-Wei Sun,et al. Shift-Invert Arnoldi Approximation to the Toeplitz Matrix Exponential , 2010, SIAM J. Sci. Comput..
[20] Roberto Garrappa,et al. Numerical Evaluation of Two and Three Parameter Mittag-Leffler Functions , 2015, SIAM J. Numer. Anal..
[21] Roberto Garrappa,et al. Evaluation of generalized Mittag–Leffler functions on the real line , 2013, Adv. Comput. Math..
[22] Lidia Aceto,et al. Rational approximations to fractional powers of self-adjoint positive operators , 2018, Numerische Mathematik.
[23] Bangti Jin,et al. Numerical methods for time-fractional evolution equations with nonsmooth data: A concise overview , 2018, Computer Methods in Applied Mechanics and Engineering.
[24] Li-Lian Wang,et al. Sharp Error Bounds for Jacobi Expansions and Gegenbauer-Gauss Quadrature of Analytic Functions , 2012, SIAM J. Numer. Anal..
[26] E. Cheney. Introduction to approximation theory , 1966 .
[27] Igor Moret,et al. On the Convergence of Krylov Subspace Methods for Matrix Mittag-Leffler Functions , 2011, SIAM J. Numer. Anal..
[28] Joseph E. Pasciak,et al. Numerical approximation of fractional powers of elliptic operators , 2013, Math. Comput..
[29] Rudolf Hilfer,et al. Numerical Algorithm for Calculating the Generalized Mittag-Leffler Function , 2008, SIAM J. Numer. Anal..
[30] Valeria Simoncini,et al. Acceleration Techniques for Approximating the Matrix Exponential Operator , 2008, SIAM J. Matrix Anal. Appl..