Development of a human skin commensal microbe for bacteriotherapy of atopic dermatitis and use in a phase 1 randomized clinical trial

[1]  S. Langan,et al.  Atopic dermatitis , 2020, The Lancet.

[2]  A. Horswill,et al.  Staphylococcus epidermidis protease EcpA can be a deleterious component of the skin microbiome in atopic dermatitis. , 2020, The Journal of allergy and clinical immunology.

[3]  S. Feldman,et al.  The validated Investigator Global Assessment for Atopic Dermatitis (vIGA-AD™): The development and reliability testing of a novel clinical outcome measurement instrument for the severity of atopic dermatitis. , 2020, Journal of the American Academy of Dermatology.

[4]  A. Horswill,et al.  Novel Peptide from Commensal Staphylococcus simulans Blocks Methicillin-Resistant Staphylococcus aureus Quorum Sensing and Protects Host Skin from Damage , 2020, Antimicrobial Agents and Chemotherapy.

[5]  D. Gonzalez,et al.  Identification of a human skin commensal bacterium that selectively kills Cutibacterium acnes. , 2020, The Journal of investigative dermatology.

[6]  J. Silverberg,et al.  Update on Atopic Dermatitis: Diagnosis, Severity Assessment, and Treatment Selection. , 2020, The journal of allergy and clinical immunology. In practice.

[7]  R. Knight,et al.  IL-4Rα Blockade by Dupilumab Decreases Staphylococcus aureus Colonization and Increases Microbial Diversity in Atopic Dermatitis , 2019, Journal of Investigative Dermatology.

[8]  A. Horswill,et al.  525 Novel peptide from commensal Staphylococcus simulans blocks MRSA quorum sensing and protects host skin from damage , 2019, Journal of Investigative Dermatology.

[9]  K. Zengler,et al.  Quorum sensing between bacterial species on the skin protects against epidermal injury in atopic dermatitis , 2019, Science Translational Medicine.

[10]  R. Gallo,et al.  Dilute bleach baths used for treatment of atopic dermatitis are not antimicrobial in vitro. , 2019, The Journal of allergy and clinical immunology.

[11]  R. Gallo,et al.  The role of the skin microbiome in atopic dermatitis. , 2019, Annals of allergy, asthma & immunology : official publication of the American College of Allergy, Asthma, & Immunology.

[12]  Sebastian M. Kuhn,et al.  Gain-of-Function Mutations in the Phospholipid Flippase MprF Confer Specific Daptomycin Resistance , 2018, mBio.

[13]  M. Blaiss,et al.  The burden of atopic dermatitis. , 2018, Allergy and asthma proceedings.

[14]  T. Bieber,et al.  Atopic dermatitis , 2018, Nature Reviews Disease Primers.

[15]  Julia Oh,et al.  A commensal strain of Staphylococcus epidermidis protects against skin neoplasia , 2018, Science Advances.

[16]  Yasmine Belkaid,et al.  The human skin microbiome , 2018, Nature Reviews Microbiology.

[17]  M. Delgado-Rodríguez,et al.  Systematic review and meta-analysis. , 2017, Medicina intensiva.

[18]  G. Núñez,et al.  Staphylococcus aureus Virulent PSMα Peptides Induce Keratinocyte Alarmin Release to Orchestrate IL-17-Dependent Skin Inflammation. , 2017, Cell host & microbe.

[19]  R. Geha,et al.  Staphylococcus aureus Epicutaneous Exposure Drives Skin Inflammation via IL-36-Mediated T Cell Responses. , 2017, Cell host & microbe.

[20]  J. Silverberg,et al.  Efficacy of bleach baths in reducing severity of atopic dermatitis: A systematic review and meta-analysis. , 2017, Annals of allergy, asthma & immunology : official publication of the American College of Allergy, Asthma, & Immunology.

[21]  Allyson L. Byrd,et al.  Staphylococcus aureus and Staphylococcus epidermidis strain diversity underlying pediatric atopic dermatitis , 2017, Science Translational Medicine.

[22]  J. Sonnenburg,et al.  Commensal Microbes and Hair Follicle Morphogenesis Coordinately Drive Treg Migration into Neonatal Skin. , 2017, Cell host & microbe.

[23]  P. Dorrestein,et al.  Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis , 2017, Science Translational Medicine.

[24]  R. Geha,et al.  Staphylococcus aureus Exploits Epidermal Barrier Defects in Atopic Dermatitis to Trigger Cytokine Expression. , 2016, The Journal of investigative dermatology.

[25]  Lianghua Bin,et al.  Genetic and epigenetic studies of atopic dermatitis , 2016, Allergy, Asthma & Clinical Immunology.

[26]  P. Bork,et al.  Durable coexistence of donor and recipient strains after fecal microbiota transplantation , 2016, Science.

[27]  K. Foster,et al.  The ecology of the microbiome: Networks, competition, and stability , 2015, Science.

[28]  R. Gallo,et al.  The Role of the Skin Microbiome in Atopic Dermatitis , 2015, Current Allergy and Asthma Reports.

[29]  Christoph Wilhelm,et al.  Commensal–dendritic-cell interaction specifies a unique protective skin immune signature , 2015, Nature.

[30]  S. Nutten Atopic Dermatitis: Global Epidemiology and Risk Factors , 2015, Annals of Nutrition and Metabolism.

[31]  A. Lauerma,et al.  Role of the skin microbiome in atopic dermatitis , 2014, Clinical and Translational Allergy.

[32]  K. Cease,et al.  Staphylococcus δ-toxin induces allergic skin disease by activating mast cells , 2013, Nature.

[33]  Dongqing Li,et al.  A Novel Lipopeptide from Skin Commensal Activates TLR2/CD36-p38 MAPK Signaling to Increase Antibacterial Defense against Bacterial Infection , 2013, PloS one.

[34]  S. Takeuchi,et al.  Visual analogue scale: evaluation of the instrument for the assessment of pruritus. , 2012, Acta dermato-venereologica.

[35]  C. Deming,et al.  Compartmentalized Control of Skin Immunity by Resident Commensals , 2012, Science.

[36]  Julia Oh,et al.  Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis , 2012, Genome research.

[37]  H. Ogawa,et al.  Staphylococcus aureus membrane and diacylated lipopeptide induce thymic stromal lymphopoietin in keratinocytes through the Toll-like receptor 2-Toll-like receptor 6 pathway. , 2010, The Journal of allergy and clinical immunology.

[38]  M. Boguniewicz,et al.  History of eczema herpeticum is associated with the inability to induce human β‐defensin (HBD)‐2, HBD‐3 and cathelicidin in the skin of patients with atopic dermatitis , 2010, The British journal of dermatology.

[39]  Allen F Ryan,et al.  Activation of TLR2 by a small molecule produced by Staphylococcus epidermidis increases antimicrobial defense against bacterial skin infections. , 2010, The Journal of investigative dermatology.

[40]  H. Williams,et al.  Interventions to reduce Staphylococcus aureus in the management of atopic eczema: an updated Cochrane review , 2010, The British journal of dermatology.

[41]  F. Granath,et al.  Injury downregulates the expression of the human cathelicidin protein hCAP18/LL‐37 in atopic dermatitis , 2010, Experimental dermatology.

[42]  V. Nizet,et al.  Staphylococcus epidermidis Antimicrobial δ-Toxin (Phenol-Soluble Modulin-γ) Cooperates with Host Antimicrobial Peptides to Kill Group A Streptococcus , 2010, PloS one.

[43]  V. Nizet,et al.  Selective antimicrobial action is provided by phenol-soluble modulins derived from Staphylococcus epidermidis, a normal resident of the skin. , 2010, The Journal of investigative dermatology.

[44]  W. Lee,et al.  Are there predominant strains and toxins of Staphylococcus aureus in atopic dermatitis patients? Genotypic characterization and toxin determination of S. aureus isolated in adolescent and adult patients with atopic dermatitis , 2009, The Journal of dermatology.

[45]  D. Margolis,et al.  The prevalence of atopic triad in children with physician-confirmed atopic dermatitis. , 2008, Journal of the American Academy of Dermatology.

[46]  Thomas Bieber,et al.  Atopic dermatitis. , 2008, The New England journal of medicine.

[47]  T. Giese,et al.  Staphylococcus aureus Protein A Triggers T Cell-Independent B Cell Proliferation by Sensitizing B Cells for TLR2 Ligands1 , 2007, The Journal of Immunology.

[48]  T. Bieber,et al.  Mechanism of HBD-3 deficiency in atopic dermatitis. , 2006, Clinical immunology.

[49]  James F. Jones,et al.  Cytokine milieu of atopic dermatitis skin subverts the innate immune response to vaccinia virus. , 2006, Immunity.

[50]  O. Schneewind,et al.  Allelic replacement in Staphylococcus aureus with inducible counter-selection. , 2006, Plasmid.

[51]  M. Kilian,et al.  Staphylococcus aureus clonal dynamics and virulence factors in children with atopic dermatitis. , 2005, The Journal of investigative dermatology.

[52]  D. Leung Infection in atopic dermatitis , 2003, Current opinion in pediatrics.

[53]  Tomas Ganz,et al.  Endogenous antimicrobial peptides and skin infections in atopic dermatitis. , 2002, The New England journal of medicine.

[54]  P. Kaszycki,et al.  Proteolytic Activity of Staphylococcus aureus Strains Isolated from the Colonized Skin of Patients with Acute-Phase Atopic Dermatitis , 2002, European Journal of Clinical Microbiology and Infectious Diseases.

[55]  M. Graeber,et al.  The eczema area and severity index (EASI): assessment of reliability in atopic dermatitis , 2001, Experimental dermatology.

[56]  Julia Brasch,et al.  Severity Scoring of Atopic Dermatitis: The SCORAD Index , 1993 .

[57]  B. Hamory,et al.  Simplified method for the isolation, identification, and characterization of Staphylococcus epidermidis in epidemiologic studies. , 1986, Diagnostic microbiology and infectious disease.

[58]  I I Lelis,et al.  [Atopic dermatitis]. , 1980, Vestnik dermatologii i venerologii.

[59]  J. Leyden,et al.  Staphylococcus aureus in the lesions of atopic dermatitis , 1974, The British journal of dermatology.

[60]  C. H. Carter EGG YOLK AGAR FOR ISOLATION OF COAGULASE-POSITIVE STAPHYLOCOCCI , 1960, Journal of bacteriology.