Graph Spectral Compressed Sensing

This report focuses on the theoretical analysis of Compressed Sensing(CS) with the partial Graph Fourier ensemble sensing matrix. In this report, we prove that with the help of additional knowledge of a linear compressible signal, a stable recovery can still be guaranteed even if the entries of the orthogonal sensing matrix is not uniformly bounded. More specifically, we construct a sensing matrix by randomly select a certain number of the rows from the graph Laplacian eigenbasis matrix. It is shown in this report that if the signal is smooth on the graph which satisfies certain conditions, we can still utilize `1 decoding to reconstruct the original signal.

[1]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[2]  J. Tropp,et al.  CoSaMP: Iterative signal recovery from incomplete and inaccurate samples , 2008, Commun. ACM.

[3]  Pierre Vandergheynst,et al.  Wavelets on Graphs via Spectral Graph Theory , 2009, ArXiv.

[4]  Michael G. Rabbat,et al.  Graph spectral compressed sensing for sensor networks , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[5]  H. Rauhut Compressive Sensing and Structured Random Matrices , 2009 .

[6]  Zhi-Quan Luo,et al.  Distributed Estimation Using Reduced-Dimensionality Sensor Observations , 2005, IEEE Transactions on Signal Processing.

[7]  Gregory K. Wallace,et al.  The JPEG still picture compression standard , 1991, CACM.

[8]  Michael G. Rabbat,et al.  Efficient Decentralized Approximation via Selective Gossip , 2011, IEEE Journal of Selected Topics in Signal Processing.

[9]  Mikhail Belkin,et al.  Using manifold structure for partially labelled classification , 2002, NIPS 2002.

[10]  Michele Zorzi,et al.  A Bayesian analysis of Compressive Sensing data recovery in Wireless Sensor Networks , 2009, 2009 International Conference on Ultra Modern Telecommunications & Workshops.

[11]  S. Mallat A wavelet tour of signal processing , 1998 .

[12]  Daniel A. Spielman,et al.  Spectral Graph Theory , 2012 .

[13]  Urbashi Mitra,et al.  Estimating inhomogeneous fields using wireless sensor networks , 2004, IEEE Journal on Selected Areas in Communications.

[14]  Volkan Cevher,et al.  Model-Based Compressive Sensing , 2008, IEEE Transactions on Information Theory.

[15]  Stphane Mallat,et al.  A Wavelet Tour of Signal Processing, Third Edition: The Sparse Way , 2008 .

[16]  Alejandro Ribeiro,et al.  Bandwidth-constrained distributed estimation for wireless sensor Networks-part I: Gaussian case , 2006, IEEE Transactions on Signal Processing.

[17]  Babak Hassibi,et al.  On the reconstruction of block-sparse signals with an optimal number of measurements , 2009, IEEE Trans. Signal Process..

[18]  R.G. Baraniuk,et al.  Distributed Compressed Sensing of Jointly Sparse Signals , 2005, Conference Record of the Thirty-Ninth Asilomar Conference onSignals, Systems and Computers, 2005..

[19]  Emmanuel J. Cand The Restricted Isometry Property and Its Implications for Compressed Sensing , 2008 .

[20]  Stephen J. Wright,et al.  Toeplitz-Structured Compressed Sensing Matrices , 2007, 2007 IEEE/SP 14th Workshop on Statistical Signal Processing.

[21]  R. DeVore,et al.  A Simple Proof of the Restricted Isometry Property for Random Matrices , 2008 .

[22]  Yue M. Lu,et al.  Uncertainty principles for signals defined on graphs: Bounds and characterizations , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[23]  Mikhail Belkin,et al.  Using Manifold Stucture for Partially Labeled Classification , 2002, NIPS.

[24]  Pascal Frossard,et al.  Chebyshev polynomial approximation for distributed signal processing , 2011, 2011 International Conference on Distributed Computing in Sensor Systems and Workshops (DCOSS).

[25]  Yonina C. Eldar,et al.  Structured Compressed Sensing: From Theory to Applications , 2011, IEEE Transactions on Signal Processing.

[26]  H. Vincent Poor,et al.  An Introduction to Signal Detection and Estimation , 1994, Springer Texts in Electrical Engineering.

[27]  Charu C. Aggarwal,et al.  Graph Clustering , 2010, Encyclopedia of Machine Learning and Data Mining.

[28]  M. Rudelson,et al.  Sparse reconstruction by convex relaxation: Fourier and Gaussian measurements , 2006, 2006 40th Annual Conference on Information Sciences and Systems.

[29]  Holger Rauhut,et al.  Compressive Sensing with structured random matrices , 2012 .

[30]  Craig Gotsman,et al.  Spectral compression of mesh geometry , 2000, EuroCG.

[31]  R. DeVore,et al.  Compressed sensing and best k-term approximation , 2008 .

[32]  Craig Gotsman,et al.  On the optimality of spectral compression of mesh data , 2005, TOGS.

[33]  Zoubin Ghahramani,et al.  Graph Kernels by Spectral Transforms , 2006, Semi-Supervised Learning.

[34]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[35]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[36]  Arthur D. Szlam,et al.  Diffusion wavelet packets , 2006 .

[37]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[38]  M. Rabbat,et al.  Decentralized compression and predistribution via randomized gossiping , 2006, 2006 5th International Conference on Information Processing in Sensor Networks.

[39]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[40]  E. Candès,et al.  Sparsity and incoherence in compressive sampling , 2006, math/0611957.

[41]  G.B. Giannakis,et al.  Distributed compression-estimation using wireless sensor networks , 2006, IEEE Signal Processing Magazine.

[42]  Robert D. Nowak,et al.  Signal Reconstruction From Noisy Random Projections , 2006, IEEE Transactions on Information Theory.

[43]  J. Haupt,et al.  Compressive wireless sensing , 2006, 2006 5th International Conference on Information Processing in Sensor Networks.

[44]  Volkan Cevher,et al.  Distributed target localization via spatial sparsity , 2008, 2008 16th European Signal Processing Conference.

[45]  Yan Chen,et al.  Algebra-Based Scalable Overlay Network Monitoring: Algorithms, Evaluation, and Applications , 2007, IEEE/ACM Transactions on Networking.

[46]  Wei Wang,et al.  Distributed Sparse Random Projections for Refinable Approximation , 2007, 2007 6th International Symposium on Information Processing in Sensor Networks.

[47]  Xiaojin Zhu,et al.  --1 CONTENTS , 2006 .

[48]  Jörg Widmer,et al.  Data Acquisition through Joint Compressive Sensing and Principal Component Analysis , 2009, GLOBECOM 2009 - 2009 IEEE Global Telecommunications Conference.

[49]  Mark Crovella,et al.  Graph wavelets for spatial traffic analysis , 2003, IEEE INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE Cat. No.03CH37428).

[50]  I. Pesenson Sampling in paley-wiener spaces on combinatorial graphs , 2008, 1111.5896.

[51]  Mike E. Davies,et al.  Sampling Theorems for Signals From the Union of Finite-Dimensional Linear Subspaces , 2009, IEEE Transactions on Information Theory.

[52]  Holger Rauhut,et al.  Circulant and Toeplitz matrices in compressed sensing , 2009, ArXiv.

[53]  Emmanuel J. Candès,et al.  Quantitative Robust Uncertainty Principles and Optimally Sparse Decompositions , 2004, Found. Comput. Math..

[54]  Robert D. Nowak,et al.  Matched source-channel communication for field estimation in wireless sensor network , 2005, IPSN 2005. Fourth International Symposium on Information Processing in Sensor Networks, 2005..

[55]  Robert M. Gray,et al.  Toeplitz and Circulant Matrices: A Review , 2005, Found. Trends Commun. Inf. Theory.

[56]  David L. Donoho,et al.  Sparse Solution Of Underdetermined Linear Equations By Stagewise Orthogonal Matching Pursuit , 2006 .

[57]  Isaac Z. Pesenson,et al.  Sampling, Filtering and Sparse Approximations on Combinatorial Graphs , 2010, ArXiv.

[58]  Michael G. Rabbat,et al.  Compressed RF Tomography for Wireless Sensor Networks: Centralized and Decentralized Approaches , 2009, DCOSS.

[59]  Mikhail Belkin,et al.  Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples , 2006, J. Mach. Learn. Res..

[60]  Yue M. Lu,et al.  An uncertainty principle for functions defined on graphs , 2011, Optical Engineering + Applications.

[61]  Mikhail Belkin,et al.  Convergence of Laplacian Eigenmaps , 2006, NIPS.

[62]  Michael G. Rabbat,et al.  Approximating signals supported on graphs , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[63]  Ian F. Akyildiz,et al.  Wireless sensor networks: a survey , 2002, Comput. Networks.

[64]  R. Coifman,et al.  Diffusion Wavelets , 2004 .

[65]  L. Grafakos Classical Fourier Analysis , 2010 .

[66]  E. Candès The restricted isometry property and its implications for compressed sensing , 2008 .

[67]  Rui Yang,et al.  Uncovering evolutionary ages of nodes in complex networks , 2011, ArXiv.

[68]  Olgica Milenkovic,et al.  Subspace Pursuit for Compressive Sensing: Closing the Gap Between Performance and Complexity , 2008, ArXiv.

[69]  Mike E. Davies,et al.  Iterative Hard Thresholding for Compressed Sensing , 2008, ArXiv.

[70]  Marco F. Duarte,et al.  Spectral compressive sensing , 2013 .