Prediction and the aquatic sciences 1

The need for prediction is now widely recognized and frequently articulated as an objective of research pro grams in aquatic science. This recognition is partly the legacy of earlier advocacy by the school of empirical limnolo gists. This school, however, presented prediction narrowly and failed to account for the diversity of predictive approaches as well to set prediction within the proper scientific context. Examples from time series analysis and proba bilistic models oriented toward management provide an expanded view of approaches and prospects for prediction. The context and rationale for prediction is enhanced understanding. Thus, prediction is correctly viewed as an aid to build ing scientific knowledge with better understanding leading to improved predictions. Experience, however, suggests that the most effective predictive models represent condensed models of key features in aquatic systems. Prediction remains important for the future of aquatic sciences. Predictions are required in the assessment of environmental concerns and for testing scientific fundamentals. Technology is driving enormous advances in the ability to study aquatic systems. If these advances are not accompanied by improvements in predictive capability, aquatic research will have failed in de livering on promised objectives. This situation should spark discomfort in aquatic scientists and foster creative ap proaches toward prediction. Résumé: La nécessité de la prédiction est maintenant largement reconnue, et souvent formulée comme un objectif des programmes de recherche en sciences aquatiques. Il s’agit là en partie de l’héritage d’une position préconisée par l’école de la limnologie empirique. Cette école présentait toutefois la prédiction de façon étroite, et ne parvenait pas à rendre compte de la diversité des approches prédictives ni à placer la prédiction dans un contexte scientifique adéquat. Des exemples tirés de l’analyse des séries chronologiques et de modèles probabilistes orientés vers la gestion permettent d’élargir les approches et les perspectives de la prédiction. Le contexte et la justification de la prédiction est une amélioration de la compréhension. Il est donc nécessaire de voir la prédiction comme une aide à la construction du savoir scientifique, une meilleure compréhension amenant à une meilleure prédiction. L’expérience montre toutefois que les modèles prédictifs les plus efficaces consistent en une représentation condensée des caractéristiques clés des systèmes aquatiques. La prédiction reste importante pour l’avenir des sciences aquatiques. Les prédictions sont nécessaires pour évaluer les problèmes environnementaux et pour tester les bases scientifiques. La technologie permet des progrès remarquables dans les moyens d’étude des systèmes aquatiques. Si ces progrès ne s’accompagnent pas d’une amélioration de la capacité de prédiction, la recherche en sciences aquatiques n’aura pas réussi à atteindre les objectifs promis. Cette situation, qui semble dérangeante pour les chercheurs en sciences aquatiques, doit susciter la recherche d’approches créatives de la prédiction. [Traduit par la Rédaction] Invited perspectives and article 72

[1]  Jonathan J. Cole,et al.  Comparative Analyses of Ecosystems: Patterns, Mechanisms, and Theories , 1991 .

[2]  R. Quirós,et al.  Fish effects on trophic relationships in the pelagic zone of lakes , 2004, Hydrobiologia.

[3]  James H. Cowan,et al.  The ecosystem approach: Its use and abuse , 1993 .

[4]  C. Duarte,et al.  Role of experimental approaches in marine microbial ecology , 1997 .

[5]  David L. Strayer,et al.  Transformation of Freshwater Ecosystems by Bivalves , 1999 .

[6]  F. Rigler The Relation between Fisheries Management and Limnology , 1982 .

[7]  A. Tessier,et al.  The aquatic insect Chaoborus as a biomonitor of trace metals in lakes , 1998 .

[8]  J. Castilla,et al.  The management of fisheries and marine ecosystems , 1997 .

[9]  Ray Hilborn,et al.  The Ecological Detective , 2013 .

[10]  M. Pace,et al.  Effects of an invasive bivalve on the zooplankton community of the Hudson River , 1998 .

[11]  Paul R. Ehrlich,et al.  Human Appropriation of Renewable Fresh Water , 1996, Science.

[12]  Khan,et al.  Arachidonic acid metabolites alter G protein-mediated signal transduction in heart. Effects on muscarinic K+ channels , 1990, The Journal of general physiology.

[13]  C. Dawson The World’s Water 1998-1999. The Biennial Report on Freshwater Resources. , 2000 .

[14]  Craig A. Stow,et al.  A Bayesian observation error model to predict cyanobacterial biovolume from spring total phosphorus in Lake Mendota, Wisconsin , 1997 .

[15]  Geoffrey E. Petts The World's Water 1998–1999; The Biennial Report on Freshwater Resources; P.H. Gleick; Island Press, Covelo, USA, 1998, XII+307 pages, paperback, ISBN 1-559-63592-4 US$ 29.95 , 1999 .

[16]  R. Vollenweider,et al.  Advances in defining critical loading levels for phosphorus in lake eutrophication. , 1976 .

[17]  E. Hofmann,et al.  Time series sampling and data assimilation in a simple marine ecosystem model , 1996 .

[18]  A. Tessier,et al.  Predicting animal cadmium concentrations in lakes , 1996, Nature.

[19]  Stephen R. Carpenter,et al.  Patterns of Primary Production and Herbivory in 25 North American Lake Ecosystems , 1991 .

[20]  G. Daily Nature's services: societal dependence on natural ecosystems. , 1998 .

[21]  F. H. Rigler,et al.  Recognition of the Possible: An Advantage of Empiricism in Ecology , 1982 .

[22]  Nutrient kinetics and the new typology: With 2 figures in the text , 1975 .

[23]  James G. Richman,et al.  Data assimilation and a pelagic ecosystem model: parameterization using time series observations , 1998 .

[24]  L. Boorman,et al.  Climate change 1995—Impacts, adaptations and mitigation of climate change: Scientific-technical analyses: Contribution of working group II to the second assessment report of the intergovernmental panel on climate change , 1997 .

[25]  Stephen R. Carpenter,et al.  Consumer Control of Lake Productivity , 2007 .

[26]  Nelson G. Hairston,et al.  Successes, limitations, and frontiers in ecosystem science , 1999 .

[27]  Dieter M. Imboden,et al.  The prediction of hypolimnetic oxygen profiles: a plea for a deductive approach , 1996 .

[28]  Carl Walters,et al.  Lessons for stock assessment from the northern cod collapse , 1996, Reviews in Fish Biology and Fisheries.

[29]  Val H. Smith,et al.  Cultural Eutrophication of Inland, Estuarine, and Coastal Waters , 1998 .

[30]  M. Pace An empirical analysis of zooplankton community size structure across lake trophic gradients1 , 1986 .

[31]  M. Scheffer Ecology of Shallow Lakes , 1997, Population and Community Biology Series.

[32]  D. Tilman Species Composition, Species Diversity, and Ecosystem Processes: Understanding the Impacts of Global Change , 1998 .

[33]  J. Downing Comparing Apples with Oranges: Methods of Interecosystem Comparison , 1991 .

[34]  Ray Hilborn,et al.  Current Trends in Including Risk and Uncertainty in Stock Assessment and Harvest Decisions , 1993 .

[35]  Robert J. Naiman,et al.  The Freshwater Imperative: A Research Agenda , 1995 .

[36]  F. H. Rigler,et al.  A Test of a Simple Nutrient Budget Model Predicting the Phosphorus Concentration in Lake Water , 1974 .

[37]  Lawrence B. Slobodkin,et al.  A Critique for Ecology , 1991 .

[38]  P. Williams The balance of plankton respiration and photosynthesis in the open oceans , 1998, Nature.

[39]  C. Duarte,et al.  The CO2 balance of unproductive aquatic ecosystems , 1998, Science.

[40]  Peter Franks,et al.  Models of harmful algal blooms , 1997 .

[41]  Stephen R. Carpenter,et al.  Freshwater ecosystem services. , 1997 .

[42]  Jonathan J. Cole,et al.  Respiration rates in bacteria exceed phytoplankton production in unproductive aquatic systems , 1997, Nature.

[43]  D. Schindler A DIM FUTURE FOR BOREAL WATERS AND LANDSCAPES , 1998 .

[44]  John T. Lehman,et al.  The goal of understanding in limnology , 1986 .

[45]  C. Walters,et al.  Is scientific inquiry incompatible with government information control , 1997 .

[46]  Carl J. Walters,et al.  Improving Links Between Ecosystem Scientists and Managers , 1998 .

[47]  Nathan P. Nibbelink,et al.  Potential effects of global climate change on small north-temperate lakes: Physics, fish, and plankton , 1996 .

[48]  Michael L. Pace,et al.  Zooplankton community structure, but not biomass, influences the phosphorus-chlorophyll a relationship , 1984 .

[49]  J. Hutchings,et al.  WHY DO FISH STOCKS COLLAPSE? THE EXAMPLE OF COD IN ATLANTIC CANADA , 1997 .

[50]  P. Vitousek Beyond Global Warming: Ecology and Global Change , 1994 .

[51]  B. McArdle The structural relationship: regression in biology , 1988 .

[52]  C. Folke Ecosystem Approaches to the Management and Allocation of Critical Resources , 1998 .

[53]  Kristin Shrader-Frechette,et al.  Method in Ecology: Strategies for Conservation , 1993 .

[54]  Carl J. Walters,et al.  Adaptive Management of Renewable Resources , 1986 .

[55]  H. Stefan,et al.  Simulated long-term temperature and dissolved oxygen characteristics of lakes in the north-central United States and associated fish habitat limits , 1996 .

[56]  R. Peters,et al.  Natural variability and the estimation of empirical relationships: a reassessment of regression methods , 1995 .