Entropy production along a stochastic trajectory and an integral fluctuation theorem.

For stochastic nonequilibrium dynamics like a Langevin equation for a colloidal particle or a master equation for discrete states, entropy production along a single trajectory is studied. It involves both genuine particle entropy and entropy production in the surrounding medium. The integrated sum of both Delatas(tot) is shown to obey a fluctuation theorem (exp([-Deltas(tot) = 1 for arbitrary initial conditions and arbitrary time-dependent driving over a finite time interval.