Are the eigenvalues of preconditioned banded symmetric Toeplitz matrices known in almost closed form?
暂无分享,去创建一个
Stefano Serra Capizzano | Fayyaz Ahmad | Sven-Erik Ekström | Eman S. Alaidarous | Dina Abdullah Alrehaili | Isabella Furci
[1] Albrecht Böttcher,et al. Eigenvalues of Hermitian Toeplitz matrices with smooth simple-loop symbols , 2015 .
[2] Stefano Serra Capizzano,et al. Preconditioning Strategies for Hermitian Indefinite Toeplitz Linear Systems , 2004, SIAM J. Sci. Comput..
[3] J. Stoer,et al. Introduction to Numerical Analysis , 2002 .
[4] Sergei M. Grudsky,et al. Asymptotics of Eigenvalues for Pentadiagonal Symmetric Toeplitz Matrices , 2017 .
[5] Stefano Serra Capizzano,et al. Are the Eigenvalues of Banded Symmetric Toeplitz Matrices Known in Almost Closed Form? , 2018, Exp. Math..
[6] Stefano Serra,et al. On the extreme spectral properties of Toeplitz matrices generated byL1 functions with several minima/maxima , 1996 .
[7] Albrecht Böttcher,et al. Inside the eigenvalues of certain Hermitian Toeplitz band matrices , 2010, J. Comput. Appl. Math..
[8] Gerry Leversha,et al. Introduction to numerical analysis (3rd edn), by J. Stoer and R. Bulirsch. Pp. 744. £49. 2002. ISBN 0 387 95452 X (Springer-Verlag). , 2004, The Mathematical Gazette.
[9] Raymond H. Chan,et al. Conjugate Gradient Methods for Toeplitz Systems , 1996, SIAM Rev..
[10] S. Serra. New PCG based algorithms for the solution of Hermitian Toeplitz systems , 1995 .
[11] Claude Brezinski,et al. Extrapolation methods - theory and practice , 1993, Studies in computational mathematics.
[12] Friedrich L. Bauer,et al. New aspects in numerical quadrature , 1963 .
[13] Stefano Serra Capizzano,et al. Eigenvalues and eigenvectors of banded Toeplitz matrices and the related symbols , 2018, Numer. Linear Algebra Appl..
[14] Carlo Garoni,et al. Generalized Locally Toeplitz Sequences , 2017 .
[15] A. Böttcher,et al. Introduction to Large Truncated Toeplitz Matrices , 1998 .
[16] Albrecht Böttcher,et al. Maximum norm versions of the Szegő and Avram-Parter theorems for Toeplitz matrices , 2015, J. Approx. Theory.
[17] Stefano Serra,et al. Optimal, quasi-optimal and superlinear band-Toeplitz preconditioners for asymptotically ill-conditioned positive definite Toeplitz systems , 1997 .
[18] P. Davis. Interpolation and approximation , 1965 .
[19] Carlo Garoni,et al. Generalized Locally Toeplitz Sequences: Theory and Applications: Volume I , 2017 .
[20] Sergei M. Grudsky,et al. Eigenvalues of Hermitian Toeplitz Matrices Generated by Simple-loop Symbols with Relaxed Smoothness , 2017 .
[21] Stefano Serra Capizzano,et al. An ergodic theorem for classes of preconditioned matrices , 1998 .
[22] J. M. Bogoya,et al. From convergence in distribution to uniform convergence , 2015, 1509.01836.
[23] Dario Bini,et al. SPECTRAL AND COMPUTATIONAL PROPERTIES OF BAND SYMMETRIC TOEPLITZ MATRICES , 1983 .
[24] Giuseppe Fiorentino,et al. C. G. preconditioning for Toeplitz matrices , 1993 .
[25] P. Revesz. Interpolation and Approximation , 2010 .
[26] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[27] Stefano Serra Capizzano,et al. Preconditioning strategies for non‐Hermitian Toeplitz linear systems , 2005, Numer. Linear Algebra Appl..
[28] Raymond H. Chan,et al. Fast Band-Toeplitz Preconditioners for Hermitian Toeplitz Systems , 1994, SIAM J. Sci. Comput..
[29] Paolo Tilli,et al. A note on the spectral distribution of toeplitz matrices , 1998 .
[30] Dario Andrea Bini,et al. Metodi Numerici per l'Algebra Lineare. , 1989 .