Review of high fidelity imaging spectrometer design for remote sensing

Abstract. We review the design and assessment techniques that underlie a number of successfully deployed space and airborne imaging spectrometers that have been demonstrated to achieve demanding specifications in terms of throughput and response uniformity. The principles are illustrated with telescope designs as well as spectrometer examples from the Offner and Dyson families. We also show how the design space can be extended with the use of freeform surfaces and provide additional design examples with grating as well as prism dispersive elements.

[1]  Liyin Yuan,et al.  Optical design of wide swath hyperspectral imager , 2014, Sensing Technologies + Applications.

[2]  Jens Nieke,et al.  Spatial PSF Nonuniformity Effects in Airborne Pushbroom Imaging Spectrometry Data , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[3]  Fred A. Kruse,et al.  Analysis of Imaging Spectrometer Data Using $N$ -Dimensional Geometry and a Mixture-Tuned Matched Filtering Approach , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[4]  W. Smythe,et al.  Near-Infrared Mapping Spectrometer experiment on Galileo , 1992 .

[5]  Pantazis Mouroulis,et al.  Recent advances in blazed grating fabrication by electron-beam lithography , 2003, SPIE Optics + Photonics.

[6]  Robert L. Lucke,et al.  The Schmidt-Dyson: a fast space-borne wide-field hyperspectral imager , 2010, Optical Engineering + Applications.

[7]  Pantazis Mouroulis,et al.  Tolerancing Methods and Metrics for Imaging Spectrometers , 2017 .

[8]  Michele Dami,et al.  The Visual and Infrared Mapping Spectrometer for Cassini , 1996, Optics & Photonics.

[9]  Robert O. Green,et al.  Wide-field imaging spectrometer for the Hyperspectral Infrared Imager (HyspIRI) mission , 2014, Optics & Photonics - Optical Engineering + Applications.

[10]  Jessica A. Faust,et al.  Imaging Spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) , 1998 .

[11]  Jason M. Mumolo,et al.  Quantum well earth science testbed , 2009 .

[12]  R. H. Brown,et al.  The Cassini Visual And Infrared Mapping Spectrometer (Vims) Investigation , 2004 .

[13]  John Shepanski,et al.  Hyperion, a space-based imaging spectrometer , 2003, IEEE Trans. Geosci. Remote. Sens..

[14]  B. Van Gorp,et al.  Design of the Compact Wide Swath Imaging Spectrometer (CWIS) , 2014, Optics & Photonics - Optical Engineering + Applications.

[15]  James J. Shea,et al.  Design, tolerancing, and alignment of pushbroom imaging spectrometers for high-response uniformity , 2001, Optics + Photonics.

[16]  Daniel R. Lobb Imaging spectrometers using concentric optics , 1997, Optics & Photonics.

[17]  T. Encrenaz,et al.  Global Mineralogical and Aqueous Mars History Derived from OMEGA/Mars Express Data , 2006, Science.

[18]  J. Dyson,et al.  Unit Magnification Optical System without Seidel Aberrations , 1959 .

[19]  Jinsong Zhou,et al.  Design of a concise Féry-prism hyperspectral imaging system based on multi-configuration , 2013, Other Conferences.

[20]  M. D. Dyar,et al.  Character and Spatial Distribution of OH/H2O on the Surface of the Moon Seen by M3 on Chandrayaan-1 , 2009, Science.

[21]  Jannick P. Rolland,et al.  Comparison of Freeform Imaging Spectrometer Design Forms Using Spectral Full-Field Displays , 2015 .

[22]  L. Mertz Concentric spectrographs. , 1977, Applied optics.

[23]  Bo-Cai Gao,et al.  Portable Remote Imaging Spectrometer coastal ocean sensor: design, characteristics, and first flight results. , 2014, Applied optics.

[24]  Robert O. Green,et al.  Optical design of a CubeSat-compatible imaging spectrometer , 2014, Optics & Photonics - Optical Engineering + Applications.

[25]  Ingo Walter,et al.  Mercury radiometer and thermal infrared spectrometer--a novel thermal imaging spectrometer for the exploration of Mercury , 2008 .

[26]  P Mouroulis,et al.  Design of pushbroom imaging spectrometers for optimum recovery of spectroscopic and spatial information. , 2000, Applied optics.

[27]  X. Prieto-Blanco,et al.  The Offner imaging spectrometer in quadrature. , 2010, Optics express.

[28]  Daniel W. Wilson,et al.  Optical design of a coastal ocean imaging spectrometer. , 2008, Optics express.

[29]  Christopher D. Smith,et al.  Snow and Water Imaging Spectrometer (SWIS): first alignment and characterization results , 2017, Optical Engineering + Applications.

[30]  M. Rast,et al.  The ESA Medium Resolution Imaging Spectrometer MERIS a review of the instrument and its mission , 1999 .

[31]  Peng Sun,et al.  Fabrication of the convex blazed grating , 2010, SPIE/COS Photonics Asia.

[32]  R. Muller,et al.  New Convex Grating Types Manufactured by Electron Beam Lithography , 1998, Diffractive Optics and Micro-Optics.

[33]  Michael P. Chrisp,et al.  Design Of A Grating Spectrometer From A 1:1 Offner Mirror System , 1987, Optics & Photonics.

[34]  John Silny Resolution modeling of dispersive imaging spectrometers , 2017 .

[35]  T. Encrenaz,et al.  Mars Surface Diversity as Revealed by the OMEGA/Mars Express Observations , 2005, Science.

[36]  Frederic Teston,et al.  The PROBA/CHRIS mission: a low-cost smallsat for hyperspectral multiangle observations of the Earth surface and atmosphere , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[37]  Bethany L. Ehlmann,et al.  Identifying and quantifying mineral abundance through VSWIR microimaging spectroscopy: A comparison to XRD and SEM , 2016, 2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS).

[38]  Pantazis Mouroulis Beyond spot diagrams: End-user oriented optical design , 2002, International Optical Design Conference.

[40]  Robert O. Green,et al.  Imaging spectroscopy of geological samples and outcrops: Novel insights from microns to meters , 2015 .

[41]  Gregg Vane,et al.  First Results From The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) , 1987, Optics & Photonics.

[42]  Alexander F. H. Goetz,et al.  Effects of spectrometer band pass, sampling, and signal‐to‐noise ratio on spectral identification using the Tetracorder algorithm , 2003 .

[43]  Jason M. Mumolo,et al.  A compact, fast, wide-field imaging spectrometer system , 2011, Defense + Commercial Sensing.

[44]  James J. Shea,et al.  Optical design of a compact imaging spectrometer for planetary mineralogy , 2007 .

[45]  Robert O. Green,et al.  Optical design, performance, and tolerancing of next-generation airborne imaging spectrometers , 2010, Optical Engineering + Applications.

[46]  B. Van Gorp,et al.  Compact Wide swath Imaging Spectrometer (CWIS): alignment and laboratory calibration , 2016, Optical Engineering + Applications.

[47]  Raymond E. Arvidson,et al.  Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO) , 2007 .

[48]  Klaus D. Mielenz Spectroscope Slit Images in Partially Coherent Light , 1967 .

[49]  Pantazis Mouroulis,et al.  Low-distortion imaging spectrometer designs utilizing convex gratings , 1998, Other Conferences.

[50]  Pantazis Mouroulis Rear landscape on steroids , 2007, SPIE Optical Engineering + Applications.

[51]  J. Michael Rodgers Unobscured mirror designs , 2002, International Optical Design Conference.

[52]  A. S. Kiran Kumar,et al.  Hyper Spectral Imager for lunar mineral mapping in visible and near infrared band , 2009 .

[53]  S. J. Sutley,et al.  Mapping Advanced Argillic Alteration at Cuprite, Nevada, Using Imaging Spectroscopy , 2014 .

[54]  Robert O. Green,et al.  Ultra-compact imaging spectrometer for remote, in situ, and microscopic planetary mineralogy , 2014 .

[55]  Robert O. Green,et al.  Alignment and characterization of high uniformity imaging spectrometers , 2011, Optical Engineering + Applications.

[56]  Ginger Drake,et al.  A hyperspectral imager for high radiometric accuracy Earth climate studies , 2011, Optical Engineering + Applications.

[57]  Christopher P. Warren,et al.  Miniaturized visible near-infrared hyperspectral imager for remote-sensing applications , 2012 .

[58]  Bernhard Sang,et al.  Compact prism spectrometer of pushbroom type for hyperspectral imaging , 2008, Optical Systems Design.

[59]  J. Boardman,et al.  Mapping target signatures via partial unmixing of AVIRIS data: in Summaries , 1995 .

[60]  P. Mouroulis,et al.  Pushbroom imaging spectrometer with high spectroscopic data fidelity: experimental demonstration , 2000 .

[61]  Steven A. Macenka,et al.  Airborne Visible/Infrared Imaging Spectrometer (Aviris) Spectrometer Design And Performance , 1987, Optics & Photonics.

[62]  A F Goetz,et al.  Imaging Spectrometry for Earth Remote Sensing , 1985, Science.

[63]  Min Zhang,et al.  Blazed grating fabrication through gray-scale Xray lithography. , 2003, Optics express.

[64]  Robert O. Green,et al.  Spectral response evaluation and computation for pushbroom imaging spectrometers , 2007, SPIE Optical Engineering + Applications.

[65]  Joseph W. Boardman,et al.  The Moon Mineralogy Mapper (M3) imaging spectrometer for lunar science: Instrument description, calibration, on‐orbit measurements, science data calibration and on‐orbit validation , 2011 .

[66]  Daniel R. Lobb,et al.  Integration and testing of the compact high-resolution imaging spectrometer (CHRIS) , 1999, Optics & Photonics.

[67]  R. Green,et al.  An introduction to the NASA Hyperspectral InfraRed Imager (HyspIRI) mission and preparatory activities , 2015 .

[68]  Michael L. Eastwood,et al.  Snow and Water Imaging Spectrometer (SWIS): optomechanical and system design for a CubeSat-compatible instrument , 2015, SPIE Optical Engineering + Applications.

[69]  John Fisher,et al.  Survey and analysis of fore-optics for hyperspectral imaging systems , 2006, SPIE Defense + Commercial Sensing.

[70]  Harry T. Enmark,et al.  Airborne Visible/Infrared Imaging Spectrometer (AVIRIS): An advanced tool for Earth remote sensing , 2011 .

[71]  Christopher G. Simi,et al.  The mapping reflected-energy sensor-MaRS: a new level of hyperspectral technology , 2009, Optical Engineering + Applications.

[72]  Lori B. Moore,et al.  Landsat-swath imaging spectrometer design , 2015, SPIE Optical Engineering + Applications.

[73]  D. Lobb Theory of concentric designs for grating spectrometers. , 1994, Applied optics.

[74]  S. J. Sutley,et al.  Imaging spectroscopy: Earth and planetary remote sensing with the USGS Tetracorder and expert systems , 2003 .

[75]  Pantazis Mouroulis,et al.  Optical design of a reflectance/Raman confocal microspectrometer , 2002, SPIE Optics + Photonics.

[76]  David Makowski,et al.  Advanced Responsive Tactically-Effective Military Imaging Spectrometer (ARTEMIS) Development and On-Orbit Focus , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[77]  R. Green,et al.  Spectral calibration requirement for Earth-looking imaging spectrometers in the solar-reflected spectrum. , 1998, Applied optics.

[78]  Torbjørn Skauli An upper-bound metric for characterizing spectral and spatial coregistration errors in spectral imaging. , 2012, Optics express.

[79]  Jason M. Mumolo,et al.  HyTES: Thermal imaging spectrometer development , 2011, 2011 Aerospace Conference.

[80]  David W. Warren,et al.  Dyson spectrometers for high-performance infrared applications , 2008 .

[81]  A. Goetz,et al.  Airborne imaging spectrometer: A new tool for remote sensing , 1984, IEEE Transactions on Geoscience and Remote Sensing.