The Carnegie-Chicago Hubble Program. VII. The Distance to M101 via the Optical Tip of the Red Giant Branch Method

The Carnegie-Chicago Hubble Program (CCHP) is building a direct path to the Hubble constant (H0) using Population II stars as the calibrator of the Type Ia supernova (SN Ia)-based distance scale. This path to calibrate the SNe Ia is independent of the systematics in the traditional Cepheid-based technique. In this paper, we present the distance to M101, the host to SN 2011fe, using the I-band tip of the red giant branch (TRGB) based on observations from the ACS/WFC instrument on the Hubble Space Telescope. The CCHP targets the halo of M101, where there is little to no host galaxy dust, the red giant branch is isolated from nearly all other stellar populations, and there is virtually no source confusion or crowding at the magnitude of the tip. Applying the standard procedure for the TRGB method from the other works in the CCHP series, we find a foreground-extinction-corrected M101 distance modulus of μ0 = 29.07 ± 0.04stat ± 0.05sys mag, which corresponds to a distance of D = 6.52 ± 0.12stat ± 0.15sys Mpc. This result is consistent with several recent Cepheid-based determinations, suggesting agreement between Population I and II distance scales for this nearby SN Ia host galaxy. We further analyze four archival data sets for M101 that have targeted its outer disk to argue that targeting in the stellar halo provides much more reliable distance measurements from the TRGB method owing to the combination of multiple structural components and heavy population contamination. Application of the TRGB in complex regions will have sources of uncertainty not accounted for in commonly used uncertainty measurement techniques.

[1]  R. Beaton,et al.  The Carnegie Chicago Hubble Program. VI. Tip of the Red Giant Branch Distances to M66 and M96 of the Leo I Group , 2019, The Astrophysical Journal.

[2]  R. Beaton,et al.  The Carnegie-Chicago Hubble Program. VIII. An Independent Determination of the Hubble Constant Based on the Tip of the Red Giant Branch , 2019, The Astrophysical Journal.

[3]  A. Riess,et al.  Large Magellanic Cloud Cepheid Standards Provide a 1% Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics beyond ΛCDM , 2019, The Astrophysical Journal.

[4]  R. Beaton,et al.  Using Surface Brightness Fluctuations to Study Nearby Satellite Galaxy Systems: Calibration and Methodology , 2019, The Astrophysical Journal.

[5]  R. Beaton,et al.  Using Surface Brightness Fluctuations to Study nearby Satellite Galaxy Systems: The Complete Satellite System of M101 , 2019, The Astrophysical Journal.

[6]  Noriyuki Matsunaga,et al.  Old-Aged Primary Distance Indicators , 2018, Space Science Reviews.

[7]  R. Beaton,et al.  The Carnegie–Chicago Hubble Program. V. The Distances to NGC 1448 and NGC 1316 via the Tip of the Red Giant Branch , 2018, The Astrophysical Journal.

[8]  L. Rizzi,et al.  A Robust Tip of the Red Giant Branch Distance to the Fireworks Galaxy (NGC 6946) , 2018, The Astronomical Journal.

[9]  Wendy L. Freedman,et al.  The Carnegie-Chicago Hubble Program. IV. The Distance to NGC 4424, NGC 4526, and NGC 4356 via the Tip of the Red Giant Branch , 2018, The Astrophysical Journal.

[10]  Wendy L. Freedman,et al.  The Near-infrared Tip of the Red Giant Branch. II. An Absolute Calibration in the Large Magellanic Cloud , 2018, 1803.01277.

[11]  Wendy L. Freedman,et al.  The Near-infrared Tip of the Red Giant Branch. I. A Calibration in the Isolated Dwarf Galaxy IC 1613 , 2018, 1803.01278.

[12]  David O. Jones,et al.  New Parallaxes of Galactic Cepheids from Spatially Scanning the Hubble Space Telescope: Implications for the Hubble Constant , 2018, 1801.01120.

[13]  Santi Cassisi,et al.  The brightness of the Red Giant Branch tip: Theoretical framework, a set of reference models, and predicted observables , 2017, 1706.09910.

[14]  R. Kennicutt,et al.  Accurate Distances to Important Spiral Galaxies: M63, M74, NGC 1291, NGC 4559, NGC 4625, and NGC 5398 , 2017, 1706.06586.

[15]  Wendy L. Freedman,et al.  Cosmology at a crossroads , 2017, Nature Astronomy.

[16]  Wendy L. Freedman,et al.  The Carnegie–Chicago Hubble Program. III. The Distance to NGC 1365 via the Tip of the Red Giant Branch , 2017, 1703.10616.

[17]  Wendy L. Freedman,et al.  The Carnegie-Chicago Hubble Program. II. The Distance to IC 1613: The Tip of the Red Giant Branch and RR Lyrae Period–luminosity Relations , 2017, 1703.06468.

[18]  In Sung Jang,et al.  The Tip of the Red Giant Branch Distances to Typa Ia Supernova Host Galaxies. V. NGC 3021, NGC 3370, and NGC 1309 and the Value of the Hubble Constant , 2017, 1702.01118.

[19]  Wendy L. Freedman,et al.  Standard Galactic Field RR Lyrae. I. Optical to Mid-infrared Phased Photometry , 2017, 1703.01520.

[20]  Joseph M. Mazzarella,et al.  REDSHIFT-INDEPENDENT DISTANCES IN THE NASA/IPAC EXTRAGALACTIC DATABASE: METHODOLOGY, CONTENT, AND USE OF NED-D , 2016, 1612.09263.

[21]  In Sung Jang,et al.  THE TIP OF THE RED GIANT BRANCH DISTANCES TO TYPE IA SUPERNOVA HOST GALAXIES. IV. COLOR DEPENDENCE AND ZERO-POINT CALIBRATION , 2016, 1611.05040.

[22]  R. Kennicutt,et al.  THE DISTANCE TO M104 , 2016, 1610.03857.

[23]  R. Kennicutt,et al.  THE DISTANCE TO M51 , 2016, 1606.04120.

[24]  Ralph C. Bohlin,et al.  PERFECTING THE PHOTOMETRIC CALIBRATION OF THE ACS CCD CAMERAS , 2016, 1606.01838.

[25]  Erika K. Carlson,et al.  THE CARNEGIE-CHICAGO HUBBLE PROGRAM. I. AN INDEPENDENT APPROACH TO THE EXTRAGALACTIC DISTANCE SCALE USING ONLY POPULATION II DISTANCE INDICATORS , 2016, 1604.01788.

[26]  Brad E. Tucker,et al.  A 2.4% DETERMINATION OF THE LOCAL VALUE OF THE HUBBLE CONSTANT , 2016, 1604.01424.

[27]  V. Lebedev,et al.  M 101 group galaxies , 2015 .

[28]  G. Carraro The Milky Way disk , 2015, 1502.03151.

[29]  D. Nataf Uncertainties in The Interstellar Extinction Curve and the Cepheid Distance to M101 , 2015, 1501.05311.

[30]  B. M'enard,et al.  DUST IN THE CIRCUMGALACTIC MEDIUM OF LOW-REDSHIFT GALAXIES , 2014, 1411.3333.

[31]  B. J. Shappee,et al.  Whimper of a Bang: Documenting the Final Days of the Nearby Type Ia Supernova 2011fe , 2014, 1608.01155.

[32]  R. Beaton,et al.  CHP-II: The Carnegie Hubble Program to Measure Ho to 3% Using Population II , 2014 .

[33]  Richard de Grijs,et al.  CLUSTERING OF LOCAL GROUP DISTANCES: PUBLICATION BIAS OR CORRELATED MEASUREMENTS? III. THE SMALL MAGELLANIC CLOUD , 2014, 1504.00417.

[34]  G. Bono,et al.  CLUSTERING OF LOCAL GROUP DISTANCES: PUBLICATION BIAS OR CORRELATED MEASUREMENTS? I. THE LARGE MAGELLANIC CLOUD , 2014, 1403.3141.

[35]  B. Madore,et al.  THE METALLICITY DEPENDENCE OF THE CEPHEID P − L RELATION IN M101 , 2013, 1310.2487.

[36]  H. Courtois,et al.  COSMICFLOWS-2: THE DATA , 2013, 1307.7213.

[37]  In Sung Jang,et al.  THE DISTANCE TO M101 HOSTING TYPE Ia SUPERNOVA 2011fe BASED ON THE TIP OF THE RED GIANT BRANCH , 2012, 1210.6040.

[38]  Wendy L. Freedman,et al.  CARNEGIE HUBBLE PROGRAM: A MID-INFRARED CALIBRATION OF THE HUBBLE CONSTANT , 2012, 1208.3281.

[39]  Federica B. Bianco,et al.  Supernova SN 2011fe from an exploding carbon–oxygen white dwarf star , 2011, Nature.

[40]  John E. Krist,et al.  20 years of Hubble Space Telescope optical modeling using Tiny Tim , 2011 .

[41]  Rollin C. Thomas,et al.  Young Type Ia Supernova PTF11kly in M101 , 2011 .

[42]  K. Z. Stanek,et al.  A NEW CEPHEID DISTANCE TO THE GIANT SPIRAL M101 BASED ON IMAGE SUBTRACTION OF HUBBLE SPACE TELESCOPE/ADVANCED CAMERA FOR SURVEYS OBSERVATIONS , 2011 .

[43]  Stefano Casertano,et al.  A 3% SOLUTION: DETERMINATION OF THE HUBBLE CONSTANT WITH THE HUBBLE SPACE TELESCOPE AND WIDE FIELD CAMERA 3 , 2011, 1103.2976.

[44]  Douglas P. Finkbeiner,et al.  MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD , 2010, 1012.4804.

[45]  B. Shappee,et al.  A New Cepheid Distance to the Giant Spiral M101 Based On Image Subtraction of HST/ACS Observations , 2010, 1012.3747.

[46]  B. Madore,et al.  The Hubble Constant , 2010, 1004.1856.

[47]  L. Rizzi,et al.  THE EXTRAGALACTIC DISTANCE DATABASE: COLOR–MAGNITUDE DIAGRAMS , 2009, 0902.3675.

[48]  E. Brinks,et al.  THINGS: THE H i NEARBY GALAXY SURVEY , 2008, 0810.2125.

[49]  Wendy L. Freedman,et al.  SHARPENING THE TIP OF THE RED GIANT BRANCH , 2008, 0809.2598.

[50]  Wendy L. Freedman,et al.  Metallicity-corrected Tip of the Red Giant Branch Distance to NGC 4258 , 2008, 0808.2180.

[51]  M. Bellazzini,et al.  The Tip of the Red Giant Branch , 2007, 0711.2016.

[52]  Edward J. Shaya,et al.  Tip of the Red Giant Branch Distances. II. Zero-Point Calibration , 2007, astro-ph/0701518.

[53]  B. Milliard,et al.  The GALEX Ultraviolet Atlas of Nearby Galaxies , 2006, astro-ph/0606440.

[54]  Edward J. Shaya,et al.  Tip of the Red Giant Branch Distances. I. Optimization of a Maximum Likelihood Algorithm , 2006, astro-ph/0603073.

[55]  Observatories of the Carnegie Institution of Washington,et al.  Cepheid Distances to SNe Ia Host Galaxies Based on a Revised Photometric Zero Point of the HST WFPC2 and New PL Relations and Metallicity Corrections , 2006, astro-ph/0602572.

[56]  S. E. Persson,et al.  New Cepheid Period-Luminosity Relations for the Large Magellanic Cloud: 92 Near-Infrared Light Curves , 2004 .

[57]  Laura Ferrarese,et al.  The Effect of Metallicity on Cepheid-based Distances , 2004, astro-ph/0402499.

[58]  G. Theureau,et al.  Calibration of the distance scale from galactic Cepheids II. Use of the HIPPARCOS calibration , 2002, astro-ph/0204328.

[59]  J. Newman,et al.  Deviations from the Local Hubble Flow. I. The Tip of the Red Giant Branch as a Distance Indicator , 2002, astro-ph/0204192.

[60]  S. E. Persson,et al.  NICMOS Observations of Extragalactic Cepheids. I. Photometry Database and a Test of the Standard Extinction Law , 2001, astro-ph/0102125.

[61]  J. Newman,et al.  A Revised Cepheid Distance to NGC 4258 and a Test of the Distance Scale , 2000, astro-ph/0012377.

[62]  N. Benı́tez,et al.  The Photometric Performance and Calibration of the Hubble Space Telescope Advanced Camera for Surveys , 2005, astro-ph/0507614.

[63]  Andrew E. Dolphin,et al.  WFPC2 Stellar Photometry with HSTphot , 2000, astro-ph/0006217.

[64]  A. Dolphin The Charge‐Transfer Efficiency and Calibration of WFPC2 , 2000, astro-ph/0006237.

[65]  Jeffrey A. Willick,et al.  A Determination of the Hubble Constant from Cepheid Distances and a Model of the Local Peculiar Velocity Field , 2000, astro-ph/0005112.

[66]  Garth D. Illingworth,et al.  The Hubble Space Telescope Key Project on the Extragalactic Distance Scale. XXVI. The Calibration of Population II Secondary Distance Indicators and the Value of the Hubble Constant , 1999, astro-ph/9908192.

[67]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[68]  Garth D. Illingworth,et al.  The Extragalactic Distance Scale Key Project. V. Photometry of the Brightest Stars in M100 and the Calibration of WFPC2 , 1998 .

[69]  Garth D. Illingworth,et al.  The Extragalactic Distance Scale Key Project. XVI. Cepheid Variables in an Inner Field of M101 , 1998 .

[70]  H. Ford,et al.  Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant , 1998, astro-ph/9801080.

[71]  P. Harding,et al.  The Hubble Space Telescope Key Project on the Extragalactic Distance Scale. XIII. The Metallicity Dependence of the Cepheid Distance Scale , 1997, astro-ph/9712055.

[72]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[73]  D. Kelson,et al.  The Extragalactic Distance Scale Key Project III. Teh discovery of Cephids and a New Distance to M101 Using the Hubble Space Telescope , 1996 .

[74]  K. Cook,et al.  Ground-Based Discovery of Cepheids and Miras in M101 , 1995, astro-ph/9505040.

[75]  Wendy L. Freedman,et al.  The tip of the Red Giant Branch as a Distance Indicator for Resolved Galaxies: II. Computer Simulations , 1995 .

[76]  D. Zaritsky Preliminary evidence for dust in galactic halos , 1994 .

[77]  Peter B. Stetson,et al.  THE CENTER OF THE CORE-CUSP GLOBULAR CLUSTER M15: CFHT AND HST OBSERVATIONS, ALLFRAME REDUCTIONS , 1994 .

[78]  Wendy L. Freedman,et al.  The Tip of the Red Giant Branch as a Distance Indicator for Resolved Galaxies , 1993 .

[79]  Peter B. Stetson,et al.  ON THE GROWTH-CURVE METHOD FOR CALIBRATING STELLAR PHOTOMETRY WITH CCDS , 1990 .

[80]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[81]  Peter B. Stetson,et al.  CCD photometry of the globular cluster M92 , 1988 .

[82]  P. Stetson DAOPHOT: A COMPUTER PROGRAM FOR CROWDED-FIELD STELLAR PHOTOMETRY , 1987 .

[83]  G. Illingworth,et al.  Discovery of Cepheids in M101 , 1986 .

[84]  A. Sandage,et al.  Steps toward the Hubble constant. III. The distance and stellar content of the M101 group of galaxies , 1974 .

[85]  Daniel Egret,et al.  Harmonizing Cosmic Distance Scales in a Post‐Hipparcos Era , 1999 .

[86]  D. Overbye Book-Review - Lonely Hearts of the Cosmos - the Scientific Quest for the Secret of the Universe , 1991 .

[87]  G. Illingworth,et al.  Cepheids and LPVs in M 101. , 1989 .