Isogeometric computation reuse method for complex objects with topology-consistent volumetric parameterization

Volumetric spline parameterization and computational efficiency are two main challenges in isogeometric analysis (IGA). To tackle this problem, we propose a framework of computation reuse in IGA on a set of three-dimensional models with similar semantic features. Given a template domain, B-spline based consistent volumetric parameterization is first constructed for a set of models with similar semantic features. An efficient quadrature-free method is investigated in our framework to compute the entries of stiffness matrix by Bezier extraction and polynomial approximation. In our approach, evaluation on the stiffness matrix and imposition of the boundary conditions can be pre-computed and reused during IGA on a set of CAD models. Examples with complex geometry are presented to show the effectiveness of our methods, and efficiency similar to the computation in linear finite element analysis can be achieved for IGA taken on a set of models.

[1]  Giancarlo Sangalli,et al.  Nonlinear static isogeometric analysis of arbitrarily curved Kirchhoff-Love shells , 2015, International Journal of Mechanical Sciences.

[2]  Vibeke Skytt,et al.  Spline Volume Fairing , 2010, Curves and Surfaces.

[3]  M. Papadrakakis,et al.  GPU accelerated computation of the isogeometric analysis stiffness matrix , 2014 .

[4]  Tom Lyche,et al.  Analysis-aware modeling: Understanding quality considerations in modeling for isogeometric analysis , 2010 .

[5]  Giancarlo Sangalli,et al.  Fast formation of isogeometric Galerkin matrices by weighted quadrature , 2016, 1605.01238.

[6]  Thomas J. R. Hughes,et al.  Conformal solid T-spline construction from boundary T-spline representations , 2013 .

[7]  J. M. Cascón,et al.  A new approach to solid modeling with trivariate T-splines based on mesh optimization , 2011 .

[8]  Jiansong Deng,et al.  Approximating rational Bezier curves by constrained Bezier curves of arbitrary degree , 2012, ArXiv.

[9]  Peter Schröder,et al.  Consistent mesh parameterizations , 2001, SIGGRAPH.

[10]  T. Hughes,et al.  Solid T-spline construction from boundary representations for genus-zero geometry , 2012 .

[11]  Kjetil André Johannessen,et al.  Optimal quadrature for univariate and tensor product splines , 2017 .

[12]  Régis Duvigneau,et al.  Analysis-suitable volume parameterization of multi-block computational domain in isogeometric applications , 2013, Comput. Aided Des..

[13]  Régis Duvigneau,et al.  Optimal analysis-aware parameterization of computational domain in 3D isogeometric analysis , 2013, Comput. Aided Des..

[14]  Josef Hoschek,et al.  Handbook of Computer Aided Geometric Design , 2002 .

[15]  T. Hughes,et al.  Efficient quadrature for NURBS-based isogeometric analysis , 2010 .

[16]  Ying He,et al.  Direct-Product Volumetric Parameterization of Handlebodies via Harmonic Fields , 2010, 2010 Shape Modeling International Conference.

[17]  Victor M. Calo,et al.  Optimal quadrature rules for odd-degree spline spaces and their application to tensor-product-based isogeometric analysis , 2016 .

[18]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[19]  Huixia Xu,et al.  Constrained polynomial approximation of rational Bézier curves using reparameterization , 2013, J. Comput. Appl. Math..

[20]  Martin Aigner,et al.  Swept Volume Parameterization for Isogeometric Analysis , 2009, IMA Conference on the Mathematics of Surfaces.

[21]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[22]  Charlie C. L. Wang,et al.  Efficient Optimization of Common Base Domains for Cross Parameterization , 2012, IEEE Transactions on Visualization and Computer Graphics.

[23]  Régis Duvigneau,et al.  Parameterization of computational domain in isogeometric analysis: Methods and comparison , 2011 .

[24]  Victor M. Calo,et al.  Gauss-Galerkin quadrature rules for quadratic and cubic spline spaces and their application to isogeometric analysis , 2016, Comput. Aided Des..

[25]  T. Sederberg,et al.  On the Convergence of Polynomial Approximation of Rational Functions , 1997 .

[26]  Chi-Wing Fu,et al.  Parameterization of Star-Shaped Volumes Using Green's Functions , 2010, GMP.

[27]  Bert Jüttler,et al.  Integration by interpolation and look-up for Galerkin-based isogeometric analysis , 2015 .

[28]  Thomas J. R. Hughes,et al.  Trivariate solid T-spline construction from boundary triangulations with arbitrary genus topology , 2012, Comput. Aided Des..

[29]  Charlie C. L. Wang,et al.  Domain construction for volumetric cross-parameterization , 2014, Comput. Graph..

[30]  Charlie C. L. Wang,et al.  Volume Parameterization for Design Automation of Customized Free-Form Products , 2007, IEEE Transactions on Automation Science and Engineering.

[31]  Charlie C. L. Wang,et al.  Constructing common base domain by cues from Voronoi diagram , 2012, Graph. Model..

[32]  Hugues Hoppe,et al.  Inter-surface mapping , 2004, ACM Trans. Graph..

[33]  Hong Qin,et al.  Harmonic volumetric mapping for solid modeling applications , 2007, Symposium on Solid and Physical Modeling.

[34]  Xilu Wang,et al.  An optimization approach for constructing trivariate B-spline solids , 2014, Comput. Aided Des..

[35]  Alla Sheffer,et al.  Cross-parameterization and compatible remeshing of 3D models , 2004, ACM Trans. Graph..

[36]  Elaine Cohen,et al.  Volumetric parameterization and trivariate b-spline fitting using harmonic functions , 2008, SPM '08.

[37]  John A. Evans,et al.  Isogeometric finite element data structures based on Bézier extraction of NURBS , 2011 .